CVPR2024 DeepCache:diffusion 无需训练即可加速方法

一、背景介绍

  • 论文链接:https://arxiv.org/abs/2312.00858

  • 代码链接:https://github.com/horseee/DeepCache

  • DeepCache 是新加坡国立大学一个 diffusion 加速的方法,该方法不同于以往剪枝算法,类似于路由的路径剪枝,无需通过 retrain 恢复精度,这样极大保留 diffusion 的泛化性。

  • 该方法在 stable diffusion 取得 2.3x 加速且精度不掉点,在 LDM 取得 7.0x 加速不掉点。

二、方法介绍

  • Diffusion 模型加速原理:diffusion model 除一致性 model 外普遍需要多步采样(少则50步,多则1000步)来完成图片生成;作者发现其中相邻步对应的 feature 存在高度的相似性,从而萌生当前步的 feature 是否能部分服用前一步的 feature 的想法,这样就能减少计算量,完成模型加速。

  • DeepCache 架构:通过复用前一步的 feature 可以节省当前步的计算量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值