模式识别算法-----BP网络设计

本文介绍了BP神经网络的基本原理和算法流程,包括网络结构的创建、权重初始化、误差反向传播以及权值更新。通过实例展示了如何使用BP网络解决XOR分类问题,其中网络结构为2个输入层神经元,2个隐藏层神经元,1个输出层神经元。讨论了学习速率选择和初始权值的影响,以及如何通过训练找到合适的权值配置。
摘要由CSDN通过智能技术生成

1.介绍

  BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值