安装依赖库
a. 必须要的依赖库:CUDA(GPU模式下需要安装)
7.0版本以上,但是6.*版本也是可以运行
BLAS 可以是ATLAS, MKL, 或者 OpenBLAS
安装ATLAS:sudo apt-get install libatlas-base-dev
Boost (1.55版本或以上)b. 可选的依赖库:
Opencv 2.4版本以上
IO库:lmdb, leveldb
cuDNN 用于GPU的加速c. 另外需要用到 pycaffe 或 matcaffe 接口需要满足一下要求:*
pycaffe : 需要Python 2.7以上版本,numpy(1.7版本以上), boost.python
matlab: 需要用到mex编译器d.安装一般的依赖库:
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install –no-install-recommends libboost-all-dev
e. 在Ubuntu14.04里面可以一次性安装所有的依赖库:
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
但是在 Ubuntu12.04里面,需要我们自己下载安装包:
glog install
wget https://google-glog.googlecode.com/files/glog-0.3.3.tar.gz
tar zxvf glog-0.3.3.tar.gz
cd glog-0.3.3
./configure
make && make installgflags install
wget https://github.com/schuhschuh/gflags/archive/master.zip
unzip master.zip
cd gflags-master
mkdir build && cd build
export CXXFLAGS=”-fPIC” && cmake .. && make VERBOSE=1
make && make installlmdb install
git clone https://github.com/LMDB/lmdb
cd lmdb/libraries/liblmdb
make && make install
2.安装caffe
从Github下载caffe zip压缩包,解压并进入caffe文件进行如下步骤:
cp Makefile.config.example Makefile.config
make all
make test
make runtest
如果使用cuDNN加速,将 USE_CUDNN := 1这一行的注释去掉。
如果只使用CPU,将 CPU_ONLY := 1这一行注释去掉。