BWN-XNOR-caffe-master安装还有一些注意事项在上一个博客
目的:为了提高卷积过程的速度,和把caffe移植到FPGA上
cd BWN-XNOR-caffe-master
./data/cifar10/get_cifar10.sh #该脚本会下载二进制的cifar,并解压,会在/data/cifar10中出现很多batch文件
./examples/cifar10/create_cifar10.sh #运行后将会在examples中出现数据集./cifar10_xxx_lmdb和数据集图像均值./mean.binaryprot
修改examples/cifar10/train_nobias.sh
#!/usr/bin/env sh
TOOLS=./build/tools
GLOG_log_dir=examples/cifar10/log
$TOOLS/caffe train \
--solver=examples/cifar10/cifar10_full.nobias.solver $@
就是把– gpu $1 给删了
或者你在cifar10_full.nobias.solver文件中把最后两行的
solver_mode: GPU
device_id: 3
改为
solver_mode: GPU
device_id: 1
或者
solver_mode: CPU
device_id: 0
训练
./examples/cifar10/train_nobias.sh
会得到两个文件
cifar10_full_nobias_iter_40000.caffemodel
cifar10_full_nobias_iter_40000.solverstate
以下是在caffe-master中的过程
cd caffe-master
./data/cifar10/get_cifar10.sh #该脚本会下载二进制的cifar,并解压,会在/data/cifar10中出现很多batch文件
./examples/cifar10/create_cifar10.sh #运行后将会在examples中出现数据集./cifar10_xxx_lmdb和数据集图像均值./mean.binaryprot
训练
./examples/cifar10/train_quick.sh
会得到两个文件
cifar10_quick_iter_4000.caffemodel.h5
cifar10_quick_iter_4000.solverstate.h5
检测
python python/classify.py examples/images/cat.jpg #这是用ImageNet模型检测的
python python/classify.py --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_iter_4000.caffemodel.h5 --center_only examples/images/cat.jpg foo #这是用我们自己的模型检测的
可能会出现的问题:
运行classify.py时报错 Mean shape incompatible with input shape
解决:
修改 ./python/caffe/io.py 文件
将
if ms != self.inputs[in_][1:]:
raise ValueError('Mean shape incompatible with input shape.')
修改为:
if ms != self.inputs[in_][1:]:
print(self.inputs[in_])
in_shape = self.inputs[in_][1:]
m_min, m_max = mean.min(), mean.max()
normal_mean = (mean - m_min) / (m_max - m_min)
mean = resize_image(normal_mean.transpose((1,2,0)), in_shape[1:]).transpose((2,0,1))
(m_max - m_min) + m_min
即可.
以下为运行结果:
为了能够显示测试图片种类以及置信度,网上有位网友写了一个classify.py
地址:http://download.csdn.net/detail/caisenchuan/9513196
下载后替换Python/classify.py
因为这个classify.py增加了几个参数 –labels_file、–print_results、–force_grayscale可以显示预测结果,同时博主发现这个文件有问题,你直接运行是输出不了结果的,需要修改171行
'synset_id': l.strip().split(' ')[0],
'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
修改为
'name': l.strip().split(' ')[0],
'synset_id': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
之后cd到caffe-master,终端运行
python python/classify.py --print_results --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_iter_4000.caffemodel.h5 --labels_file data/cifar10/batches.meta.txt --center_only examples/images/cat.jpg foo
显示结果