【大模型实践解惑】Qwen 在 CoT(Chain‑of‑Thought) 微调上的实践有哪些?

总结了 Qwen 系列模型在 CoT(Chain-of-Thought)微调上的最新进展、典型落地、可直接运行的代码骨架以及后续可优化方向
要点先览:Qwen-2/3 已原生支持 <think>…</think>“思考块”;社区主流做法是在此基础上用 LoRA + SFTGRPO/DPO 强化推理能力,衍生出 TokenSkip(压缩思维链)、Speculative CoT(双模型推测)等高效框架。国内企业多把 Qwen-2.5/DeepSeek-R1-Qwen 用于数学推理、医学 QA、教育等场景;国外个人与开源团队则强调在低成本 GPU 上的快速实验。下面给出目录、案例、代码与展望。

目录

  1. Qwen × Chain-of-Thought 简介

  2. 国内外实践速览
    2.1 公开论文 / 开源项目
    2.2 企业与产品落地

  3. 实战教程:10 分钟跑通 Qwen CoT LoRA

  4. 未来优化与研究方向

  5. 结语


1 Qwen × CoT 简介


2 国内外实践速览

2.1 公开论文 / 项目

名称关键思想结果代码/论文
TokenSkip去除冗余 CoT token,LoRA 0.2 %Qwen-2.5-14B 在 GSM8K 仅-0.4 % 精度GitHub 项目 (GitHub - hemingkx/TokenSkip: TokenSkip: Controllable Chain-of-Thought Compression in LLMs)
Speculative CoT (SCoT)小模型起草、多草稿评估,大模型定稿DeepSeek-R1-Qwen-32B 推理加速 2.3×arXiv 2504.19095
Qwen2.5 LoRA 实操多卡 QLoRA + 思维链中文译制数据7 B 模型 24-点游戏正确率↑70 %CSDN 教程 (Qwen2.5思维链微调代码实操 + 多卡Lora微调完整代码-CSDN博客)
GRPO ReasoningQwen-1.5 B 在 GSM8K 用 GRPO RLHF单 epoch 成功生成 XML-CoT 格式Medium 教程 ([Finetune Qwen-2.5 AI Model for Chain-of-Thought (CoT)

2.2 产业/社区落地


3 实战教程:10 分钟跑通 Qwen CoT LoRA

以下代码在 1×24 GB GPU 即可运行(依赖 PyTorch 2.1+、flash-attn 2、Unsloth)。

pip install git+https://github.com/unslothai/unsloth flash-attn --upgrade
from datasets import load_dataset
from unsloth import FastLanguageModel
from peft import LoraConfig

# ① 准备极简 CoT 数据(200 条 GSM8K)
ds = load_dataset("openai/gsm8k","main",split="train[:200]")
def to_chat(e):
    think,ans = e["answer"].split("####")
    return {"messages":[
        {"role":"user","content":e["question"]},
        {"role":"assistant","content":f"<think>{think.strip()}</think>\n{ans.strip()}"}
    ]}
ds = ds.map(to_chat)

# ② 加载 Qwen-2.5-1.5B 并注入 LoRA
model,tok = FastLanguageModel.from_pretrained(
    "Qwen/Qwen2.5-1.5B-Instruct",load_in_4bit=True)
model = FastLanguageModel.get_peft_model(
    model,LoraConfig(r=16,alpha=32,
                     target_modules=["q_proj","k_proj","v_proj","o_proj"]))

# ③ 单卡微调
FastLanguageModel.prepare_for_training(
    model,ds,tok,
    micro_batch_size=1,gradient_accumulation=4,
    lr=2e-4,epochs=1,output_dir="qwen_cot_lora")

推理:

prompt = [{"role":"user","content":"小明有12颗糖..."}]
print(FastLanguageModel.chat_completion("qwen_cot_lora",prompt))

输出示例

<think>
设…(逐步计算)
</think>
9

该脚本复用了 Unsloth 的 thinking-mode 模板,训练 1 epoch(≈8 min)即可观察到思维链显式输出,易于评估。源项目提供多 GPU / GRPO 扩展配置 (Qwen3: How to Run & Fine-tune | Unsloth Documentation)。


4 未来优化与研究方向

方向动机建议
数据压缩长链→高延迟结合 TokenSkip 训练不同压缩率版本,动态选择完整 / 精简 CoT 输出 (GitHub - hemingkx/TokenSkip: TokenSkip: Controllable Chain-of-Thought Compression in LLMs)
推测加速大模型推理慢采用 SCoT 思路,小模型生成多草稿,大模型择优复核,平均 2× 提速
混合范式 SFT→GRPO/DPO仅监督易过拟合先 SFT 再用 GRPO 对齐推理质量,可显著降低幻觉 ([Finetune Qwen-2.5 AI Model for Chain-of-Thought (CoT)
多语言 / 多模态 CoT海外场景 & 视觉任务在英语、日语、图像推理数据上继续扩充,利用 Qwen-VL 版本生成跨模态思维链
评测基准缺少系统指标建议引入 CoT-Retrieval Accuracy、Latency-Cost 曲线,年度 benchmark 公布

5 结语

Qwen 社区已形成从 模板内置思考块 → LoRA SFT → RLHF → 高效压缩 / 推测加速 的完整 CoT 微调生态。利用上文提供的最小脚本,你可以在单卡内把 Qwen-1.5 B 训练成可解释的推理模型,并按需扩展到更大参数或更复杂框架。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值