
哈佛博后带你玩转机器学习
文章平均质量分 90
掌握如何快速上手真实的AI项目。机器学习进行AI项目开发的完整流程与落地。
云博士的AI课堂
前华为数据科学家/高级软件工程师/项目主管,哈佛大学高级访问学者/博后,浙江大学计算机专业博士,德国包豪斯大学媒体学院高级访问学者/博后,人工智能与计算机视觉行业专家,AI技术实践超20年。
展开
-
机器学习原理与实践
机器学习原理与实践原创 2024-11-10 17:09:52 · 324 阅读 · 0 评论 -
【大模型开发解惑】大模型部署后,如何在用户反馈数据和增量数据上进行在线微调或增量训练?
本文系统梳理了大模型在线微调与增量训练的理论、技术与实践。从基于梯度累积与PEFT的参数高效更新,到流式训练与联邦学习的隐私保护架构,再到性能评估与未来研究方向,均提供了落地案例与代码。希望本文能为学术与工程实践提供完整参考,助力持续学习系统在工业界加速落地。原创 2025-05-02 23:20:05 · 775 阅读 · 0 评论 -
【大模型开发解惑】大模型部署后,如何在本地持续收集用户反馈数据?
大模型部署后实际,如何在本地持续收集用户反馈数据?原创 2025-05-02 23:06:10 · 682 阅读 · 0 评论 -
【大模型开发解惑】针对Qwen2多模态模型,如何设置不同学习率并融合视觉特征?
基于Qwen2多模态模型的学习率设置与视觉特征融合方法实践原创 2025-05-01 18:58:25 · 953 阅读 · 0 评论 -
【大模型开发解惑】针对 Qwen2‑VL 系列,如何同时微调视觉和语言模块?
多模态大模型(MLLM)的轻量级调优范式迅速成熟,Qwen2-VL 系列已在 Hugging Face 提供完整权重和工具链,可通过 LoRA/QLoRA 等参数高效微调方法同时更新视觉与语言分支。在整理国内外最新实践后,下面给出一套端到端同时细调视觉 + 语言模块的实战方案,附完整代码骨架、典型案例、以及面向下一代 Qwen-VL 的前瞻建议。原创 2025-05-01 18:46:41 · 645 阅读 · 0 评论 -
【大模型开发解惑】DeepSeek-R1 强化学习(RL)步骤与方法解析
以DeepSeek‑R1为例, 强化学习(RL) 步骤和方法原创 2025-04-30 07:41:48 · 1023 阅读 · 0 评论 -
【大模型解惑】大模型如何在 Supervised Fine‑Tuning (SFT) 之后进行 PPO 强化学习微调?
大模型如何在 Supervised Fine‑Tuning (SFT) 之后进行 PPO 强化学习微调?原创 2025-04-30 07:38:04 · 1186 阅读 · 0 评论 -
【大模型实践解惑】 如何在 Supervised Fine‑Tuning (SFT) 之后进行 Direct Preference Optimization (DPO) 微调?
【大模型实践解惑】 如何在 Supervised Fine‑Tuning (SFT) 之后进行 Direct Preference Optimization (DPO) 微调?原创 2025-04-29 17:19:38 · 911 阅读 · 0 评论 -
【大模型实践解惑】Qwen 在 CoT(Chain‑of‑Thought) 微调上的实践有哪些?
总结了 Qwen 系列模型在 CoT(Chain-of-Thought)微调上的最新进展、典型落地、可直接运行的代码骨架以及后续可优化方向。要点先览:Qwen-2/3 已原生支持 <think>…</think>“思考块”;社区主流做法是在此基础上用 LoRA + SFT 或 GRPO/DPO 强化推理能力,衍生出 TokenSkip(压缩思维链)、Speculative CoT(双模型推测)等高效框架。国内企业多把 Qwen-2.5/DeepSeek-R1-Qwen 用于数学推理、医学 QA、教育等场景原创 2025-04-29 17:08:35 · 1078 阅读 · 0 评论 -
【大模型解惑】如何利用 Chain‑of‑Thought(CoT)提示和中间变量标注提升模型推理能力?
【大模型解惑】如何利用 Chain‑of‑Thought(CoT)提示和中间变量标注提升模型推理能力?原创 2025-04-28 08:34:35 · 886 阅读 · 0 评论 -
【大模型解惑】大模型如何设计评估指标(准确率、F1、BLEU、ROUGE)并进行基准对比?与普通机器学习有何不同
【大模型解惑】大模型如何设计评估指标(准确率、F1、BLEU、ROUGE)并进行基准对比?与普通机器学习有何不同原创 2025-04-28 08:32:35 · 720 阅读 · 0 评论 -
【大模型解惑】大模型如何划分训练、验证和测试集?和普通的机器学习有何不同
【大模型解惑】大模型如何划分训练、验证和测试集?和普通的机器学习有何不同原创 2025-04-28 08:09:22 · 491 阅读 · 0 评论 -
【大模型解惑】大模型微调如何设置学习率、batch size、微调轮数、warm‑up、权重衰减等超参数?
在微调大语言模型(LLM)时,“学习率、批次大小、训练轮数、预热步数 (warm-up) 和权重衰减”这组超参数往往决定了效率与效果的上限。结合近两年国内外公开的最佳实践与论文报告,可以归纳出一套易落地的调参框架:"先用经验区间做“粗Sweep”,再用自动化搜索(Optuna / Ax)做“细Sweep”,并按任务规模递增地启用 LoRA、Q-LoRA、ZeRO-3 或 Flash-Attention 等节省算力的技术。"下面给出完整文章内容,包括概念讲解、对比表、代码范例(以阿里 Qwen-14B 为例)原创 2025-04-27 18:40:39 · 1051 阅读 · 0 评论 -
【大模型解惑】大模型超参数调优有哪些经验或自动化工具(如 Optuna)可用?
【大模型解惑】大模型超参数调优有哪些经验或自动化工具(如 Optuna)可用?原创 2025-04-27 18:26:23 · 614 阅读 · 0 评论 -
【大模型解惑】Qwen全参数微调、LoRA、Q-LoRA 或 Adapter在参数更新量、训练速度和性能提升上有何差异?
关于 全参数微调(Full Parameter Fine-Tuning)、LoRA(Low-Rank Adaptation)、Q-LoRA(Quantized Low-Rank Adaptation) 和 Adapter 在 参数更新量、训练速度和性能提升 上的差异,以及如何在阿里Qwen的开源大模型上应用它们,下面是一个详细的文章目录提纲,并附上代码案例和解释。原创 2025-04-27 18:19:53 · 981 阅读 · 0 评论 -
【大模型解惑】DeepSeek等何时采用全参数微调、LoRA、Q-LoRA 或 Adapter?
【大模型解惑】DeepSeek等何时采用全参数微调、LoRA、Q-LoRA 或 Adapter?原创 2025-04-27 18:16:17 · 604 阅读 · 0 评论 -
【大模型解惑】针对聊天、问答、代码生成等场景,如何清理、标注和格式化训练数据(JSONL、Prompt–Completion 对)?
针对聊天、问答、代码生成等场景,如何清理、标注和格式化训练数据(JSONL、Prompt–Completion 对)?原创 2025-04-26 11:23:24 · 520 阅读 · 0 评论 -
【大模型解惑】如何将大模型部署纳入 CI/CD 流水线,实现自动化测试、部署与版本管理?
以下是一个将大模型部署整合到CI/CD流水线的详细方案,包含目录结构、核心流程说明及实际代码案例。内容涵盖自动化测试、容器化部署、版本管理以及持续交付的完整链路。原创 2025-04-26 10:18:11 · 314 阅读 · 0 评论 -
【大模型解惑】 在本地环境中如何确保大模型隔离、防止敏感数据泄露?如何使用 Docker、Kubernetes 或虚拟机加固部署?
本地大模型若直接接触企业知识或用户隐私,一旦容器越狱、网络外连或磁盘被窃取就可能泄露敏感数据。隔离思路是让模型“跑在盒子里、网在笼子里、数据全程加密”,并结合持续监控。下文先给出总体威胁模型与隔离层,然后分别给出 Docker、Kubernetes、虚拟机 (含机密计算)三条加固路线,并附可复制的示例代码与 YAML。原创 2025-04-24 21:19:22 · 868 阅读 · 0 评论 -
【大模型与机器学习解惑】机器学习里的 “提取特征” 跟数学里矩阵的特征值,特征向量以及特征矩阵是什么关系?
在机器学习中,“特征提取”(feature extraction)是指将原始数据映射为有助于模型学习的数值表示;而在线性代数里,“特征值”“特征向量”及“特征矩阵”则刻画矩阵的内在性质。二者在 PCA、谱聚类 等算法中交汇:ML 用特征值分解来寻找数据的主方向,但其“特征”本身各有不同的含义和作用。下文将系统对比二者的概念、联系和区别,并辅以 Python 代码示例帮助理解。原创 2025-04-24 11:26:36 · 1037 阅读 · 0 评论 -
【大模型解惑】如何集成 New Relic AI 或自建监控方案,对本地部署的模型推理延迟、内存使用、吞吐量进行实时监控?
如何集成 New Relic AI 或自建监控方案,对本地部署的模型推理延迟、内存使用、吞吐量进行实时监控?原创 2025-04-23 23:28:44 · 564 阅读 · 0 评论 -
【大模型解惑】对比 Ollama、llama.cpp、vLLM、BentoML、TGI(Text Generation Inference)等部署框架的优缺点及适用场景?
Ollama、llama.cpp、vLLM、BentoML 和 TGI (Text Generation Inference) 都是近两年出现的主流大模型部署/推理框架。它们在平台定位、依赖栈、吞吐延迟优化与运维便利度上侧重不同,适合的硬件环境与业务规模也不一样。下面按「关键特性 → 优劣 → 典型场景」结构作系统对比。原创 2025-04-23 23:26:07 · 701 阅读 · 0 评论 -
【大模型解惑】Qwen 官方支持的量化方案有哪些?
通义千问 (Qwen) 官方目前公开维护 4 种低比特量化路径:Bits & Bytes Int4/Int8、GPTQ、AWQ 以及 GGUF (llama.cpp)。它们分别覆盖推理直量化、权重量化、激活感知量化和端侧推理场景,可在不同硬件上把显存占用降到 FP16 的 25 %–50 %,同时维持接近原精度。下文首先列出目录,然后逐一对比实现原理、硬件要求、性能差异,并给出最小可运行代码片段与输出目录组织示例。原创 2025-04-22 09:23:29 · 1006 阅读 · 0 评论 -
【大模型解惑】如何用 Int4、4-bit 或 Q-LoRA量化模型以降低推理成本,同时保证性能?
如何使用 Int4、4-bit 或 Q-LoRA 技术量化模型以降低推理成本,同时保证性能?原创 2025-04-22 08:08:09 · 584 阅读 · 0 评论 -
【大模型技术解惑】本地部署LLM工具指南:Python环境、核心依赖与隔离管理?
在本地部署Ollama、llama.cpp、LMDeploy、vLLM等工具时,需要特别注意Python版本、依赖库和环境隔离管理原创 2025-04-20 10:56:03 · 366 阅读 · 0 评论 -
【大模型技术解惑】DeepSeek‑V3与Qwen本地部署硬件推荐?
针对 DeepSeek‑V3 和 Qwen 系列模型的本地部署,核心瓶颈在于 GPU 的显存与计算能力,以及配套的多核 CPU、系统内存和高速存储。以下配置覆盖从个人开发、测试到企业级生产的各类场景需求。原创 2025-04-20 10:52:46 · 394 阅读 · 0 评论 -
【大模型与机器学习解惑】如果在医学影像/遥感/缺陷检测等小样本场景中使用 ResNet,迁移学习要注意哪些细节?
小样本场景下 ResNet 迁移学习关键细节原创 2025-04-17 08:50:47 · 735 阅读 · 0 评论 -
【大模型与机器学习解惑】对 NLP 或语音任务,如何把残差思想迁移到 Transformer / WaveNet 中?
【大模型与机器学习解惑】对 NLP 或语音任务,如何把残差思想迁移到 Transformer / WaveNet 中?原创 2025-04-17 08:07:06 · 979 阅读 · 0 评论 -
【大模型与机器学习解惑】如何用 Grad-CAM 等可解释方法分析 ResNet 的注意区域?
如何用 Grad-CAM 等可解释方法分析 ResNet 的注意区域?原创 2025-04-17 08:05:27 · 880 阅读 · 0 评论 -
【大模型与机器学习解惑】Pre-activation ResNet(v2)去掉了哪些结构性障碍?效果提升的根本原因是什么?
ResNet v2 通过预激活设计移除了后激活和非恒等映射的干扰,使信号在极深层网络中直接传播,同时利用 BN 的正则化作用提升泛化能力。这些改进使其在 ImageNet 和 CIFAR 数据集上显著超越 v1,尤其在 1000+ 层网络中表现突出。原创 2025-04-17 07:56:08 · 829 阅读 · 0 评论 -
【大模型与机器学习解惑】ResNet50-D、ResNet50-IBN、ResNet-RS 这些改进版主要改了哪些层?
【大模型与机器学习解惑】ResNet50-D、ResNet50-IBN、ResNet-RS 这些改进版主要改了哪些层?原创 2025-04-17 07:46:36 · 1022 阅读 · 0 评论 -
【大模型与机器学习解惑】DenseNet / HighwayNet / ResNeXt 分别改进了 ResNet 的哪些方面?
【大模型与机器学习解惑】DenseNet / HighwayNet / ResNeXt 分别改进了 ResNet 的哪些方面?原创 2025-04-17 07:43:07 · 724 阅读 · 0 评论 -
【大模型与机器学习解惑】同样深度下,ResNet 的 forward/backward 时延瓶颈通常在哪里?
同样深度下,ResNet 的 forward/backward 时延瓶颈通常在哪里?原创 2025-04-17 07:38:45 · 755 阅读 · 0 评论 -
【大模型与机器学习解惑】与 VGG16、Inception-v3 相比,ResNet 在参数量、FLOPs、精度上的主要优势与短板?
【大模型与机器学习解惑】与 VGG16、Inception-v3 相比,ResNet 在参数量、FLOPs、精度上的主要优势与短板?原创 2025-04-17 07:36:58 · 708 阅读 · 0 评论 -
【大模型与机器学习解惑】深层 ResNet 会不会出现“训练误差增大而测试误差反降”现象?为什么?
深层 ResNet 会不会出现“**训练误差增大而测试误差反降**”现象?为什么?原创 2025-04-16 08:06:08 · 347 阅读 · 0 评论 -
【大模型与机器学习解惑】在训练 152 层以上网络时,学习率策略如何调整才能稳定收敛?
在训练 152 层以上网络时,学习率策略如何调整才能稳定收敛?原创 2025-04-16 08:04:45 · 552 阅读 · 0 评论 -
【大模型与机器学习解惑】ResNet 何时需要 BatchNorm、何时可用 GroupNorm / LayerNorm?
ResNet 何时需要 BatchNorm、何时可用 GroupNorm / LayerNorm原创 2025-04-16 07:54:07 · 1170 阅读 · 0 评论 -
【大模型与机器学习解惑】残差网络如果输入输出通道数不一致,残差如何对齐?有几种做法?
ResNet 中残差通道对齐方法原创 2025-04-16 07:41:21 · 895 阅读 · 0 评论 -
【大模型与机器学习解惑】ResNet 的“恒等映射假设”具体指什么?在数学上怎样表述?
ResNet 的恒等映射假设(Identity Mapping Hypothesis)原创 2025-04-16 07:35:02 · 1106 阅读 · 0 评论 -
【大模型与机器学习解惑】Projection shortcut(1×1卷积下采样) 和 Identity shortcut 在什么场景下各自使用?
ResNet 残差连接的两种实现方式及使用场景原创 2025-04-16 07:33:00 · 628 阅读 · 0 评论