MinerU-pdf识别-本地部署

MinerU本地部署

项目介绍:这是一款支持PDF、网页、电子书提取的一站式、开源、高质量数据提取工具。

项目地址:GitHub - opendatalab/MinerU: 一站式、开源、高质量的数据提取工具,支持PDF/网页/电子书提取。

准备工具:git,cuda12.4(本机版本)

项目部署:

  1. 将项目文件下载到本地

  1. 创建虚拟环境:conda create -n MinerU python=3.10

  1. 激活虚拟环境:conda activate MinerU

  1. 进入项目地址:D:

cd D:\liu\Project\MinerU-master

  1. 安装应用程序:pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com

安装完成后验证版本:版本号应大于0.7.0

  1. 下载模型(已下载git并可使用):
  1. 在模型下载目标路径右键选择open git bash here
  2. git lfs install # 安装 Git 大文件存储插件 (Git LFS)
  3. git lfs clone 魔搭社区

以上方法为本人尝试,更多方法参考官网,模型拉取后检查模型文件是否完整

注意模型拉取后名为model非直接可用,需要进入文件夹找到models文件夹即为可用,即打开文件夹就是下图结构

  1. 文件配置
  1. 从根目录获取配置模板文件。magic-pdf.template.json

  1. 将文件复制到用户目录下并更名为magic-pdf.json

  1. 编辑文件修改models-dir字段和device-mode字段

models-dir字段:模型路径

device-model:cpu 或 cuda

  1. 覆盖支持 CUDA 的 torch 和 torchvision 的安装(CPU用户跳过此步骤)

官网代码:pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118

本机cuda版本不同,pytorch对应版本代码:pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121

  1. 下载paddlepaddle-gpu,安装后会自动开启 OCR 加速:pip install paddlepaddle-gpu==2.6.1(CPU用户跳过此步骤)
  2. 运行:magic-pdf -p small_ocr.pdf -o output(测试文件存放在根目录demo文件夹下,可移动至根目录执行此命令)

结果:

对照:左为pdf文件,右为识别结果

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值