8、数据清洗之数据表处理之数据筛选方法

在数据中,选择需要的行或者列方法

方法一:

基础索引方式,就是直接引用

方法二:

ioc[行索引名称或者条件,列索引名称或者标签]

iloc[行索引位置,列索引位置]

#注意,区分ioc和iloc

import pandas as pd
import numpy  as np
import os
os.chdir(r'your path')
df=pd.read_csv('your file.csv',encoding='utf-8',dtype={'行索引':str})

df.info()#查看数据变量类型
df.head(10)#
df.columns#输出列标签

#直接引用
df[['user_id','cat1']].head(5)#取多个字段
df[['user_id','cat1']][1:5]#取多个字段的某些行
#选择的是标签,左臂右臂
df.loc[3:4]
#选取列,列标签以列表形式传入
df.loc[:,['user_id','man_id']].head(10)
#
df.loc[1:3,['user_id','man_id']]
#
df.loc[df.user_id=='123456',['user_id','man_id']]
#满足某个ID或者购买数量大于3的列标签数据,
df.loc[(df.user_id=='123456')|(df.buy_mount>3),['user_id','man_id']]
#iloc选择的是位置,左臂由开
#df.iloc[1:3]
#选择第二行到第四行
df.iloc[:,1:4]
#选择第二行、第11行  第一列 第二列
df.iloc[[1,10],[0,2]]

#loc与iloc区别
loc:按标签
iloc:按位置

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DLANDML

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值