SeNet论文笔记

  1. 大致背景及思路
    a. 由Momenta团队完成,2017年ImageNet大赛的冠军结构,top-5 error降到了只有2.25%,相比于2016年冠军,有接近25%的提高。
    b. 为了提高网络提取特征的能力,很多方法都致力于在空间上做出一些加强。而这篇文章,从通道之间的关系入手,提出了一个新的结构单元“SE Block”。

  2. 具体结构及思路
    a. 首先从CNN说起,CNN通过在局部感受野上,通过将空间上的信息和基于通道的信息融合,得到大量信息的结合。很多的工作都将关注点放在了空间上,所以自然的我们也可以从通道上进行考虑。
    b. 这个结构的核心在于它能通过使用全局的信息,有选择的加强有意义的特征,压制无用特征,使得网络重新适应特征。
    c. 结构如下图:
    在这里插入图片描述

    1.首先,输入X通过一个普通的卷积层,得到特征层U。
    2.将U通过全局池化,得到11c的Z,这一步被称作Squeeze。原本的每个卷积只是对应在自己的感受野 上,而无法利用区域外的上下文信息,在较低层时,这个问题显得更加明显。而这个转化,可以被看作时在各个通道上的全局信息的集合,也就是说具有了全局的感受野,那么在后续就可以利用全局信息了。
    3.然后将Z通过两个全连接层,和两激活函数,其中第一次时Relu,第二次为Sigmoid。这一步被称为 Excitation。这步使得通道的权重适应与输入的Z,也就是可以动态的去适应输入,提高对于特征的分辨力。
    4.然后就是将得到的各个通道的权重和原本的U结合,得到最终的输出。
    5.整个SE Block其实很像RNN中的门结构,Excitation决定了通过的特征的权重。

    d. 由于引入的结构中包含两个全连接层,使得整体的模型参数由一些增长,大约在百分之10左右。d. 由于引入的结构中包含两个全连接层,使得整体的模型参数由一些增长,大约在百分之10左右。

  3. 实验结果

    a. 可以看到,在加入了SE Block后,错误率相比原版本都有一定的下降。论文后续还比较了在多个数据集,包括检测任务的数据集上的效果,都得到了优于传统结构的结论。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值