SENet(Squeeze-and-Excitation Networks)

本文聚焦计算机视觉注意力机制,着重介绍SENET。它是CVPR2017文章且获ImageNet2017分类冠军。SENET针对通道维度进行信息权重分配,通过Squeeze和Excitation操作实现通道注意力机制。该模块简单易扩展,加入后模型复杂度增加少,还能提升通用网络分类精度。

什么是计算机视觉注意力     

        注意力机制就是对输入权重分配的关注,最开始使用到注意力机制是在编码器-解码器(encoder-decoder)中, 注意力机制通过对编码器所有时间步的隐藏状态做加权平均来得到下一层的输入变量。

       计算机视觉(computer vision)中的注意力机制(attention)的基本思想就是想让系统学会注意力——能够忽略无关信息而关注重点信息。

       注:我们只讨论CV里面的注意力机制,不谈NLP的注意力机制。随着注意力机制在CNN网络中的广泛应用,并且日趋成熟,我将用几篇博客陆续更新注意力机制的主要网络的分析,分享给有需要的同学,也是自己的学习记录。觉得还不错的同学可以给个赞并关注博主,不胜感激^_^。

注意力机制:硬注意力和软注意力。

硬注意力:是具体到某一数值,例如:分类中的概率最高的一项。硬注意力是不连续的,不可微,所以很难进行训练。

神经网络中一般注意力指的是软注意力机制:是指某一区间范围内的连续数值。那么,重点是软注意力是可微的,则我们可以利用神经网络的正向传播进行数值传递,并利用方向传播进行梯度更新,学习到较好的注意力权重。

就注意力关注的域来分:

空间域(spatial domain)

通道域(channel domain)

层域(layer domain)

混合域(mixed domain)

时间域(time domain)

SENET

        本文介绍的是CVPR2017上的文章,并且赢得了ImageNet2017分类任务的冠军,SENET模块简单,方便扩展到其他网络模型中,论文地址:SENET

SENET主要思路

       CNN网络中,图像或者说Feature Map的特征主要分为空间特征(Spatial)和通道(Channel)特征。对于空间特征来说,在CNN网络正向传播的过程中,通过卷积运算从输入特征一步步的卷积操作得到新的Feature Map么本质上来说,卷积操作是局部特征,那么随着网络正向传播的深入,到深层网络的特征野会远大于浅层网络特征图的感受野,说明深层网络有着更多的空间维度信息。对于通道特征来说,是通过卷积操作后得到的空间特征,并在通道维度上进行融合而得到。

       SENET就是对通道维度的

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值