知识图谱常用评价指标:MRR,MR,HITS@K,Recall@K,Precision@K

本文详细介绍了知识图谱链接预测中的关键评估指标,包括MRR(Mean Reciprocal Rank)、MR(Mean Rank)、HITS@K以及Recall@K。MRR强调预测结果的排名,值越大越好;MR关注平均排名,值越小越好;HITS@K衡量前k个结果的准确性,而Recall@K关注在前k个结果中找到的相关结果比例。这些指标在评估知识图谱性能时至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、MRR

MRR的全称是Mean Reciprocal Ranking(排名的倒数),其中Reciprocal是指“倒数的”的意思。该指标越大越好(即预测排名越靠前,倒数就越大,求和结果越大越好)。具体的计算方法如下:

M R R = 1 ∣ S ∣ ∑ i = 1 ∣ S ∣ 1 r a n k i = 1 ∣ S ∣ ( 1 r a n k 1 + 1 r a n k 2 + ⋅ ⋅ ⋅ + 1 r a n k i ) MRR=\frac{1}{|S|} \sum_{i=1}^{|S|} \frac{1}{rank_i}=\frac{1}{|S|}(\frac{1}{rank_1}+\frac{1}{rank_2}+\cdot\cdot\cdot+\frac{1}{rank_i }) MRR=S1i=1Sranki1=S1(rank11+rank21++ranki1)

其中 S S S是三元组集合, ∣ S ∣ |S| S是三元组集合个数, r a n k i rank_i ranki是指第 i i i个三元组的链接预测排名。例如,对于三元组(Jack,born_in,Italy),链接预测的结果可能是:

hrtscorerank
Jackborn_inIreland0.7891
Jackborn_inItaly0.7532
Jackborn_inGermany0.6953
Jackborn_inChina0.4564
Jackborn_inThomas0.2345

那么,三元组(Jack,born_in,Italy)的链接预测排名则是2.

二、MR

MR的全称是Mean Rank。该指标越小越好(排名越靠前rank越小,求和也就更小),具体的计算方法如下:
M R = 1 ∣ S ∣ ∑ i = 1 ∣ S ∣ r a n k i = 1 ∣ S ∣ ( r a n k 1 + r a n k 2 + ⋅ ⋅ ⋅ + r a n k i ) MR=\frac{1}{|S|} \sum_{i=1}^{|S|} rank_i=\frac{1}{|S|}(rank_1+rank_2+\cdot\cdot\cdot+rank_i) MR=S1i=1Sranki=S1(rank1+rank2++ranki)

三、HITS@K

top-k推荐:从最后的按得分排序的推荐列表中返回前k个结果。
该指标是指在链接预测中排名小于 k k k的三元组的平均占比。具体的计算方法如下:

H I T S @ K = 1 ∣ S ∣ ∑ i = 1 ∣ S ∣ I ( r a n k i ≤ k ) HITS@K=\frac{1}{|S|} \sum_{i=1}^{|S|} \mathbb{I}(rank_i\le k) HITS@K=S1i=1SI(rankik)

其中,上述公式涉及的符号和MRR计算公式中涉及的符号一样,另外 I ( ⋅ ) \mathbb{I}(\cdot) I()是indicator函数(若条件真则函数值为1,否则为0)。一般地,取k等于1、3或者10。该指标越大越好。

四、Recall@K,Precision@K

首先需要搞清Recall和Precision的含义,具体含义参考:分类之混淆矩阵(Confusion Matrix)
;类比HITS@K。

Precision@K准确率是指前topK结果中检索出相关结果数与检索出的结果总数的比率,衡量的是检索系统的查准率;
Recall@K召回率是指前topK结果中检索出的相关结果数和库中所有的相关结果数的比率,衡量的是检索系统的查全率。

参考链接

  1. KGE性能指标:MRR,MR,HITS@1,HITS@3,HITS@10
  2. 评测标准召回率Recall@K的理解与实例解析
  3. 知识图谱-常用评价指标-MRR、MR和HIT@n
  4. MRR,MAP等评估方法(常用与IR和QA任务)
### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类型的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛型定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

l8947943

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值