高等工程数学(二):基变换与坐标变换

证明一个矩阵可逆的方法有5种;

(1)看这个矩阵的行列式值是否为0,若不为0,则可逆;

(2)看这个矩阵的秩是否为n,若为n,则矩阵可逆;

(3)定义法:若存在一个矩阵B,使矩阵A使得AB=BA=E,则矩阵A可逆,且B是A的逆矩阵;

(4)对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆;

(5)对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆。

如何证明过渡矩阵是可逆的?

过渡矩阵是基1与基2之间的变换关系
显然基中的各个向量都是线性无关的,则基构成的矩阵是满秩的
因此对于A=PB,其中A,B分别是两个基构成的矩阵,P是过渡矩阵
显然A、B可逆
则AB^-1=P
显然A、B^-1都可逆
从而过渡矩阵P可逆

过渡矩阵是线性空间一个基到另一个基的转换矩阵
即有 (a1,...,an) = (b1,...,bn)P
因为 b1,...,bn 
线性无关,
所以 r(P) = r(a1,...,an) = n
故 P 是
可逆矩阵.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值