多智能体强化学习QMIX论文笔记

本文首发于https://zhuanlan.zhihu.com/p/327129657,欢迎关注知乎专栏https://www.zhihu.com/column/c_1317610869467709440,不定期更新多智能体强化学习相关的论文

QMIX:Monotonic Value Function Factorisation for Deep Multi-agent Reinforcement Learning

QMIX是多智能体强化学习中比较经典的算法之一,其在DQN类的值函数强化学习的基础上进行改进,从而实现了针对多智能体环境的强化学习算法

多智能体强化学习

多智能体强化学习与单智能体的强化学习最本质的区别就在于多智能体的环境中,每个智能体都会和环境进行交互,造成环境的改变,所以,对于多智能体环境中的一个智能体来说,其外界环境的改变不仅与自己当前的状态和动作有关,更与其他的未知信息(例如其他智能体的动作)有关,所以对于某一个智能体而言,其外界环境是不断变化的,而且这个变化也是没有一定的规律的。这样子的情况下就无法满足强化学习中的马尔可夫性,所以算法的收敛性也就没有了理论的保证。
此外,对于多智能体强化学习而言,每个智能体通常只能得到对于环境的一部分的观察,并不能完全获得环境的状态。
多智能体的奖励r也与单智能体有所不同,在多智能体的任务中,通常情况下,r是整个环境中得到的奖励,而无法得知其中的每个智能体的奖励是多少。
为了解决多智能体强化学习的问题,目前主流的方式有以下几种:

  • IDL(Independent Q-Learning): 不考虑环境的不确定性,直接对每个智能体使用单智能体的强化学习算法,虽然不具备收敛性保证,但是在实际应用中,有时候能够获得不错效果
  • Centralized Learning: 将所有的智能体当作一个整体,状态s为所有智能体状态的拼接,动作也为所有智能体动作的拼接。这样子虽然满足了马尔可夫性,但是动作空间和状态空间随着智能体数量的增加而指数增加,难以处理大量的智能体。此外,由于在现实世界,智能体之间的信息交流是有限的,所以将所有智能体的状态都收集起来再计算得到动作后再执行是难以实时实现的。
  • Centralized Training with Decentralized Excution :在训练过程中使用Centralized的方式,因为在训练过程中(通常在仿真环境下)没有信息通讯的限制,也可以使用全局状态甚至额外的信息,所以使用Centralized的训练方式,也能保证算法的收敛性。在执行过程中,由于每个智能体只能得到自己当前的观测(observation),所以使用decentralized执行的方式。这种方式也是目前多智能体强化学习算法中最主流的方式

Value Decomposition Networks

想要得到较为正确的动作价值函数,就需要使用centralised的方式,来获取总的动作价值函数 Q t o t Q_{tot} Qtot,其s为全体状态,a为联合动作。这样的函数不仅非常难学,而且即使学到了也难以通过这个函数使得每个智能体能够在仅有自己的observation的情况下独立的选择动作。为了解决这个问题,VDN就提出了这种方法–将 Q t o t Q_{tot} Qtot当作所有智能体的动作价值函数 Q a Q_{a} Qa的累加,即:
Q t o t ( τ , u ) = ∑ i = 1 n Q i ( τ i , u i ; θ i ) Q_{tot}(\bm{\tau,u})=\sum_{i=1}^{n}Q_{i}(\tau^i,u^i;\theta^i) Qtot(τ,u)=i=1nQi(τi,

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智能强化学习是指在一个环境中存在多个智能,每个智能都有自己的观察状态和可以执行的动作,并且它们通过相互作用来实现某种任务的学习过程。在构建多智能强化学习系统时,我们需要考虑每个智能的决策策略、交互方式以及如何协调它们的行为。 引用中提到了传统算法在多智能环境下的一些短板。传统的Q学习算法在多智能环境中不适用,因为每个智能的策略都在发生变化,导致环境的不稳定性,从而带来学习稳定性的挑战。经典的DQN算法也不适用,因为不知道其他智能的状态会导致自身状态转移的不确定性,阻止了以往经验重放的直接使用。此外,策略梯度(PG)算法在多智能环境中也不适用,因为智能数量的增加会加剧固有的方差大的问题。 为了解决这些问题,引用提到了一种名为MADDPG(Multi-Agent Deep Deterministic Policy Gradient)的算法。MADDPG采用了集中式训练和分散式执行的框架。在训练时,每个智能的Critic接收除了自身的状态-动作信息外,还包括其他智能的动作和状态信息。而在应用时,只利用局部信息即可给出最优动作。这种框架的优势是不仅适用于合作,还适用于竞争性或合作竞争混合的情况。此外,MADDPG算法不需要知道环境的动力学模型以及特殊的通信需求。 因此,在构建多智能强化学习系统时,我们可以考虑使用MADDPG算法,采用集中式训练和分散式执行的框架,使智能能够通过相互协作或竞争来学习并完成任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [多智能强化学习智能工厂在线调度中应用](https://blog.csdn.net/crazy_girl_me/article/details/123138099)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [多智能强化学习算法MADDPG(一:由单智能强化学习到多智能强化学习)](https://blog.csdn.net/qq_40089637/article/details/108377307)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值