暨南大学课程评估自动化脚本

前段时间,学校发通知要进行课程评估,女票评估完所有课程花了5分钟,而且评估主要是机械化操作,真心觉得烦。为了节省暨南大学同学宝贵的5分钟,本人研究了一下课程评估系统的运作过程,写出了以下自动化评估脚本(为了使用方便,特意写了两个版本,一个直接使用账号密码登录,但是需要验证码识别的python环境,另一个使用cookie):

#! /usr/bin/env python
#-- coding: utf-8 --
import urllib
import urllib2
from PIL import Image,ImageEnhance
from pytesser import *
import cookielib
import re
from bs4 import BeautifulSoup

#设置登录账号和密码
username = ""           #学号
password = ""           #密码

#识别验证码
while 1:
    cookie = cookielib.CookieJar()
    handler=urllib2.HTTPCookieProcessor(cookie)
    opener = urllib2.build_opener(handler)
    response = opener.open('http://undergraduate.jnu.edu.cn/ces/')
    keepcookie = ''
    for item in cookie:
        keepcookie = 'JSESSIONID=%s' %(item.value)
    print keepcookie 

    header = {    
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.70 Safari/537.36',    
    'Connection': 'keep-alive',       
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',  
    'Cookie': keepcookie} 
    url = 'http://undergraduate.jnu.edu.cn/ces/servlet/ValidateCodeServlet'
    req = urllib2.Request(url,headers=header)
    im = urllib2.urlopen(req).read()
    with open('download.jpg','wb') as f:
        f.write(im)
    im = Image.open('download.jpg')
    box = (4,5,48,21)                               #裁剪图像,提高识别的正确率
    region = im.crop(box)

    region.save("image_code.jpg")
    imgry = region.convert('L')
    sharpness =ImageEnhance.Contrast(imgry)         #增强对比度,提高识别的正确率
    sharp_img = sharpness.enhance(2.0)
    sharp_img.save("image_L.jpg")
    text = image_to_string(sharp_img)
    if text.strip().isdigit():
        print "validcode:"
        print text.strip()
        break

#登录
post_data = {
    "username":username,
    "password":password,
    "validateCode": text
}
post_data_urlencode = urllib.urlencode(post_data)
requrl = 'http://undergraduate.jnu.edu.cn/ces/sys/Login/login.do?method=login'
req = urllib2.Request(url = requrl,headers = header ,data =post_data_urlencode)
result = opener.open(req)

#获取所有课程编号和班号
url = 'http://undergraduate.jnu.edu.cn/ces/zk/EvaStu/evaList.do'
req = urllib2.Request(url,headers=header)
wbdata = urllib2.urlopen(req).read()
soup = BeautifulSoup(wbdata,"html.parser")
nodeset = soup.findAll(attrs={"class","btn_operate"})
pattern = re.compile(r'/ces/.+ids=.{5}')
coursenums = []      
for node in nodeset:
    for link in re.findall(pattern,str(node)):
        begi = link.find('classNo')
        classNo = link[begi+8:begi+8+9]
        begi = link.find('courseNo')
        courseNo = link[begi+9:begi+8+9]
        coursenums.append([classNo,courseNo])
        
#构造post数据,逐个评估完所有课程
for coursenum in coursenums:
    post_data = {   "eduBean.classNo":[coursenum[0]],
                    "eduBean.courseNo":[coursenum[1]],
                    "eduBean.courseName":["课程名无关"],
                    "eduBean.subType":["EDU_EVA"],
                    "eduBean.type":["EVA_STU"],
                    "eduBean.typeId":["55"],
                    "eduBean.checkItem":["229:0.20:1106:9.5","230:0.20:1106:9.5","231:0.20:1106:9.5","232:0.20:1106:9.5","233:0.20:1106:9.5"],
                    "eduBean.msg":[""],
                    "selfBean.classNo":[coursenum[0]],
                    "selfBean.courseNo":[coursenum[1]],
                    "selfBean.courseName":["课程名无关"],
                    "selfBean.subType":["SELF_EVA"],
                    "selfBean.type":["EVA_STU"],
                    "selfBean.typeId":["56"],
                    "selfBean.checkItem":["234:0.30:1127:9.5","235:0.30:1127:9.5","236:0.40:1127:9.5"],
                    "selfBean.msg":[""]
                }
    post_data_urlencode = urllib.urlencode([(k, v) for k, vs in post_data.items() for v in vs])
    requrl = 'http://undergraduate.jnu.edu.cn/ces/zk/EvaStu/addEva.do'
    req = urllib2.Request(url = requrl,headers = header ,data =post_data_urlencode)
    print req
    res_data = urllib2.urlopen(req)
    res = res_data.read()
    print res.decode('utf-8')

term = coursenums[0][0][:5]
#完成最后的提交
submitallurl = 'http://undergraduate.jnu.edu.cn//ces/zk/EvaStu/submitAll.do?xn=%s' % term
print submitallurl
req = urllib2.Request(url = submitallurl,headers = header)
res_data = urllib2.urlopen(req)
res = res_data.read()
#print res.decode('utf-8')
print "over!"

需要安装pytesser库

#! /usr/bin/env python
#-- coding: utf-8 --
import urllib
import urllib2
import re
from bs4 import BeautifulSoup

JSESSIONID = ""     #填写cookie
cookie = 'JSESSIONID=%s' % (JSESSIONID)

header = {    
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.70 Safari/537.36',    
'Connection': 'keep-alive',       
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',  
'Cookie': cookie}

#获取所有课程编号和班号
url = 'http://undergraduate.jnu.edu.cn/ces/zk/EvaStu/evaList.do'
req = urllib2.Request(url,headers=header)
wbdata = urllib2.urlopen(req).read()
soup = BeautifulSoup(wbdata,"html.parser")
nodeset = soup.findAll(attrs={"class","btn_operate"})
pattern = re.compile(r'/ces/.+ids=.{5}')
coursenums = []      
for node in nodeset:
    for link in re.findall(pattern,str(node)):
        begi = link.find('classNo')
        classNo = link[begi+8:begi+8+9]
        begi = link.find('courseNo')
        courseNo = link[begi+9:begi+8+9]
        coursenums.append([classNo,courseNo])

#构造post数据,逐个评估完所有课程
for coursenum in coursenums:
    post_data = {   "eduBean.classNo":[coursenum[0]],
                    "eduBean.courseNo":[coursenum[1]],
                    "eduBean.courseName":["课程名无关"],
                    "eduBean.subType":["EDU_EVA"],
                    "eduBean.type":["EVA_STU"],
                    "eduBean.typeId":["55"],
                    "eduBean.checkItem":["229:0.20:1106:9.5","230:0.20:1106:9.5","231:0.20:1106:9.5","232:0.20:1106:9.5","233:0.20:1106:9.5"],
                    "eduBean.msg":[""],
                    "selfBean.classNo":[coursenum[0]],
                    "selfBean.courseNo":[coursenum[1]],
                    "selfBean.courseName":["课程名无关"],
                    "selfBean.subType":["SELF_EVA"],
                    "selfBean.type":["EVA_STU"],
                    "selfBean.typeId":["56"],
                    "selfBean.checkItem":["234:0.30:1127:9.5","235:0.30:1127:9.5","236:0.40:1127:9.5"],
                    "selfBean.msg":[""]
                }

    post_data_urlencode = urllib.urlencode([(k, v) for k, vs in post_data.items() for v in vs])
    requrl = 'http://undergraduate.jnu.edu.cn/ces/zk/EvaStu/addEva.do'
    req = urllib2.Request(url = requrl,headers = header ,data =post_data_urlencode)
    print req
    res_data = urllib2.urlopen(req)
    res = res_data.read()
    print res.decode('utf-8')

term = coursenums[0][0][:5]
#完成最后的提交
submitallurl = 'http://undergraduate.jnu.edu.cn//ces/zk/EvaStu/submitAll.do?xn=%s' % term
print submitallurl
req = urllib2.Request(url = submitallurl,headers = header)
res_data = urllib2.urlopen(req)
res = res_data.read()
#print res.decode('utf-8')
print "over!"

使用cookie版本
运行后的效果如下:



欢迎广大同学使用和参与改进!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值