GEE 逐年ndvi及批量export image todrive代码

该博客介绍了如何使用Google Earth Engine(GEE)计算MODIS产品的NDVI年序列,并将其导出到Google云端。通过定义ROI,选择MOD13A2数据集,逐年过滤并取中位数,最后应用自定义掩模,将结果以年份为名保存。代码适用于批量处理和下载遥感数据。

GEE 逐年ndvi及批量export image todrive代码

<GEE笔记>

GEE对MODIS产品MOD13A2为例,求中位数并导出年序列数据到google云端(后右键下载即可)。

代码通过学习知乎 xtnncherish 的《利用GEE逐年计算1990-2020年秦岭北麓遥感生态指数(RSEI)三》一文得出。

在导入自己所需roimask后,运行此代码可直接进行数据的下载,后点击run(批量run可见于: link)代码片.

Map.addLayer(roi, {color:"000000"},"roi");
Map.centerObject(roi, 5); 

var VI = ee.ImageCollection('MODIS/006/MOD13A2')
    .select("NDVI")
    .filterBounds(roi);

var Years = ee.List.sequence(2000,2020);  // 生成逐年的List
// 逐年map
var yearlist = Years.getInfo();
print(yearlist); 
var year_imgcol = ee.ImageCollection.fromImages(yearlist.map(function(year) {
    var img = VI.filter(ee.Filter.calendarRange(year, year, 'year')).median().mask('users/****/mask').select("NDVI");
    //users/****/mask填自己存在assets中的栅格数据
    var y=img.set({name:ee.String(ee.Number(year).int())})
    Export.image.toDrive({
      image:img,
      folder:'NDVI2000_2020',
      description:'ndvi'+year.toString(),
      region:roi,
      scale:1000,
      crs:'EPSG:4326'
      });
  Map.setCenter(100.1, 40.3, 5);
  Map.addLayer(img, ndviVis, 'NDVI');
    return img;
}));
var ndviVis = {
    min: 0.0,
    max: 9000.0,
    palette: [
      'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901',
      '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',
      '012E01', '011D01', '011301'
    ],
  };

运行结果如图所示:
结果图
[1]:https://zhuanlan.zhihu.com/p/351129182 (利用GEE逐年计算1990-2020年秦岭北麓遥感生态指数(RSEI)三)
[2]:https://blog.csdn.net/qq_21567935/article/details/89061114 (google earth engine随缘学习(十二)批量下载影像&批量执行RUN任务)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值