pandas 的常规操作

#字符串数字化:                                                
def str_num(data):
    lis = data.columns
    for c in lis:
        lis = df[f'{c}'].unique().tolist()
        dict1 = {i:v for i,v in 
                       zip(lis,range(1,len(lis)+1))}
        df[f'{c}'] = df[f'{c}'].map(dict1)

#将数据集进行拆分成训练数据和测试数据
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.2)

#随机打乱                                                          
from sklearn.utiles import shuffle                

 np.random.shuffle(indexs)

画边界图                                                                                  

#分界图需要的数据: X , Y , XY
def get_XY(data):
    x = np.linspace(data[:,0].min(), data[:,0].max(), 1000)
    y = np.linspace(data[:,1].min(), data[:,1].max(), 1000)

    X, Y = np.meshgrid(x, y)
    XY = np.c_[X.ravel(), Y.ravel()]
    return X,Y,XY

X,Y,XY = get_XY(data)
axes.pcolormesh(X,Y,y.reshape(1000,1000),shading='auto')

#搜索引擎模式,把长词继续划分的更细
jieba.lcut_for_search(s)
#全模式,尽可能的把所有的词找出来
jieba.lcut(s,cut_all=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值