tensorflow
tensorflow
lainegates
think more, code less.
展开
-
tensorboard试用及bug解决
今天尝试了下tensorflow自带的tensorboard,简单又好用啊。 大体3步: (1)标识要记录的tensor,常用的两种tf.summary.scalar('scalar-name', scalar-value)用于记录标量,tf.summary.histogram('tensor-name', tensor-value)用来记录张量。还有其他类型,如图片等。使用如下:tf.summ原创 2017-12-20 18:54:10 · 1917 阅读 · 0 评论 -
tensorflow 使用遇到问题及解决办法
变量消耗显存不多却显存不足UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory."Converting sparse IndexedSlices to a dense Tensor of unknown s原创 2018-01-04 19:49:28 · 18976 阅读 · 11 评论 -
Tensorflow 常见函数说明
常见参数说明epoch:整个数据集,通常几个epoch,就会完整跑几轮数据集(但随机取样时不一定会全用) batch:一次训练的数据集大小,常见的128,256,… learning rate:学习速度常见函数说明获取shape值a = tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32)print(a.shape) p...原创 2017-12-18 15:44:59 · 1210 阅读 · 0 评论 -
End to End Memory network
关键词End2End, Memory Networks, Multiple hops来源arXiv 2015.03.31 (published at NIPS 2015)特色设计了全新网络,相对于LSTM,以词为单位的时序,memory network是以句子为单位。解决方案原图 加备注图 计算过程按原图lookup词表A获得句子原创 2018-01-23 15:41:28 · 612 阅读 · 0 评论 -
Text Understanding with the Attention Sum Reader Network
关键词Bi-GRU, Bi-LSTM, attention sum来源arXiv 2016.03.04 (published at ACL 2016)问题使用带attention的深度模型解决完型填空问题技术细节模型比attentive reader简单,分以下几步:使用双向GRU/LSTM单元计算docment每个词的拼接词向量doc_endcoer原创 2018-02-02 16:01:34 · 643 阅读 · 0 评论