深度学习
文章平均质量分 56
lainegates
think more, code less.
展开
-
神经网络名词
这里写自定义目录标题常见名词术语任务常见名词术语fine tunning (微调):调整参数WordPiece 嵌入:WordPiece是指将单词划分成一组有限的公共子词单元,能在单词的有效性和字符的灵活性之间取得一个折中的平衡。例如图4的示例中‘playing’被拆分成了‘play’和‘ing’;位置嵌入(Position Embedding):位置嵌入是指将单词的位置信息编码成特征向量,位置嵌入是向模型中引入单词位置关系的至关重要的一环。位置嵌入的具体内容参考我之前的分析;分割嵌入(Segm原创 2021-06-26 16:37:08 · 355 阅读 · 0 评论 -
pytorch 数据路径
测试pytorch 例子,尝试使用下面代码下载数据,实在太慢了。trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)testset = torchvision.datasets.CIFAR10(root='./data', train=False,原创 2021-06-16 21:28:38 · 711 阅读 · 0 评论 -
KBQA: Learming Q
知识图谱相关论文,没有用深度学习模型,但号称达到了state-of-art结果. 以为用了深度学习才看的,结果读完发现并没有…作者W Cui , H Wang , H Wang , Y Song , SW Hwang , …来源《Proceedings of the Vldb Endowment》 , 2017 , 10 (5) :565-576问题使用知识库...原创 2018-02-26 18:12:07 · 793 阅读 · 0 评论 -
Text Understanding with the Attention Sum Reader Network
关键词Bi-GRU, Bi-LSTM, attention sum来源arXiv 2016.03.04 (published at ACL 2016)问题使用带attention的深度模型解决完型填空问题技术细节模型比attentive reader简单,分以下几步:使用双向GRU/LSTM单元计算docment每个词的拼接词向量doc_endcoer原创 2018-02-02 16:01:34 · 643 阅读 · 0 评论 -
End to End Memory network
关键词End2End, Memory Networks, Multiple hops来源arXiv 2015.03.31 (published at NIPS 2015)特色设计了全新网络,相对于LSTM,以词为单位的时序,memory network是以句子为单位。解决方案原图 加备注图 计算过程按原图lookup词表A获得句子原创 2018-01-23 15:41:28 · 612 阅读 · 0 评论 -
Teaching Machines to Read and Comprehend
关键词real natural language traning data, nerual model来源Teaching Machines to Read and Comprehend arXiv 2015.06.10 (published at NIPS 2015)问题针对阅读理解缺乏大规模训练数据集,从CNN和Daily Mail获取数据,构建了相应的数据集。文章直接做document,关键原创 2017-12-19 19:50:59 · 660 阅读 · 0 评论 -
fastText Ngram 的处理过程
最近小研究了下fastText过程,挺有收获,这里单讲下fastText的ngram处理过程,其余训练一类和word2vec很像,有兴趣的请移步 fastText 源码分析。基础信息首先说下 (1)ngram的使用前提是数据稀疏,这一点极其重要,也是后文成立的关键; (2)fastText训练和预测使用的隐藏层和输出层大小是一致的; (3)fastText的ngram并没有有意保存ngram原创 2017-09-04 17:36:44 · 8828 阅读 · 9 评论 -
Tensorflow 常见函数说明
常见参数说明epoch:整个数据集,通常几个epoch,就会完整跑几轮数据集(但随机取样时不一定会全用) batch:一次训练的数据集大小,常见的128,256,… learning rate:学习速度常见函数说明获取shape值a = tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32)print(a.shape) p...原创 2017-12-18 15:44:59 · 1210 阅读 · 0 评论