Python 关联规则分析
什么是关联规则分析?
关联规则分析是一个数据挖掘技术,通过发现事物之间的相关性来洞察数据背后的规律。其中最常见的就是通过挖掘事物之间的频繁项集和关联规则,来发现商品之间的搭配和规律,帮助商家制定更科学合理的营销策略。
Python 中的关联规则分析
Python 提供了多种工具和库来帮助我们进行关联规则分析,其中最常用的就是 mlxtend
和 apriori
。这些工具可帮助用户快速、简便地完成数据挖掘工作,例如生成频繁项集和挖掘出关联规则等等。
mlxtend
mlxtend
是一个用来提供广泛的机器学习工具的 Python 库。其中包含了多种高效的机器学习算法,包括关联规则挖掘。通过使用 mlxtend,用户可以方便地进行关联规则分析。例如,下面的代码展示了如何使用 mlxtend 来查找频繁项集:
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
# 准备数据
dataset = [['apple', 'bread', 'water'], ['apple', 'bread', 'butter']