hive参数hive.mapred.mode分析

26 篇文章 0 订阅

Hive配置中有个参数hive.mapred.mode,分为nonstrict,strict,默认是nonstrict

如果设置为strict,会对三种情况的语句在compile环节做过滤:

1. 笛卡尔积Join。这种情况由于没有指定reduce join key,所以只会启用一个reducer,数据量大时会造成性能瓶颈

    // Use only 1 reducer in case of cartesian product
    if (reduceKeys.size() == 0) {
      numReds = 1;

      // Cartesian product is not supported in strict mode
      if (conf.getVar(HiveConf.ConfVars.HIVEMAPREDMODE).equalsIgnoreCase(
          "strict")) {
        throw new SemanticException(ErrorMsg.NO_CARTESIAN_PRODUCT.getMsg());
      }
    }

2. order by后面不跟limit。order by会强制将reduce number设置成1,不加limit,会将所有数据sink到reduce端来做全排序。

    if (sortExprs == null) {
      sortExprs = qb.getParseInfo().getOrderByForClause(dest);
      if (sortExprs != null) {
        assert numReducers == 1;
        // in strict mode, in the presence of order by, limit must be specified
        Integer limit = qb.getParseInfo().getDestLimit(dest);
        if (conf.getVar(HiveConf.ConfVars.HIVEMAPREDMODE).equalsIgnoreCase(
            "strict")
            && limit == null) {
          throw new SemanticException(generateErrorMessage(sortExprs,
                ErrorMsg.NO_LIMIT_WITH_ORDERBY.getMsg()));
        }
      }
    }


3. 读取的表是partitioned table,但没有指定partition predicate。

注:如果是多级分区表的话,只要出现任何一个就放行

        // If the "strict" mode is on, we have to provide partition pruner for
        // each table.
        if ("strict".equalsIgnoreCase(HiveConf.getVar(conf,
            HiveConf.ConfVars.HIVEMAPREDMODE))) {
          if (!hasColumnExpr(prunerExpr)) {
            throw new SemanticException(ErrorMsg.NO_PARTITION_PREDICATE
                .getMsg("for Alias \"" + alias + "\" Table \""
                    + tab.getTableName() + "\""));
          }
        }

这三种case在数据量比较大的情况下都会造成生成低效的MR Job,影响执行时间和效率,不过直接抛出exception又感觉太forcefully了。

可以在一些非线上生产环境下的ad-hoc查询端中开启strict mode,比如hiveweb,运营工具。


本文链接http://blog.csdn.net/lalaguozhe/article/details/12044181,转载请注明


阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
Hadoop生态系统中,Hive是使用Hadoop进行数据处理和分析的重要工具之一。执行Hive查询时,有时可能会遇到错误消息“execution error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.mapred”。这是由于某种原因导致Hive查询失败而产生的错误消息。接下来我将详细介绍该错误消息背后的原因及其解决方案。 首先,让我们看看这个错误消息中的一些术语。首先,execution error指的是在执行Hive查询期间出现的错误。return code 2表示在MapReduce作业中发生了致命的错误。最后,org.apache.hadoop.hive.ql.exec.mr.mapredHiveMapReduce执行器。 该错误消息的出现可能是由多种原因导致的。以下是一些可能的原因和与之应对的解决方案: 1.资源不足:Hadoop集群可能没有足够的资源来执行查询,导致Hive作业失败。解决方法是增加Hadoop集群的资源,例如添加更多的节点或增加容量。 2.权限问题:查询执行用户可能没有足够的权限进行查询操作。解决方法是检查查询执行用户的权限,通常情况下应授予足够的权限以执行查询。 3.输入/输出错误:输入或输出文件可能存在问题,导致Hive作业失败。解决方法是检查输入和输出文件的完整性和正确性。 4.配置问题:可能存在Hadoop集群或Hive配置问题。解决方法是检查配置文件并确保其正确。 5.网络问题:可能存在网络故障,导致Hive无法与Hadoop集群通信。解决方法是检查网络连接,并确保Hive可以访问Hadoop集群。 综上所述,当您在执行Hive查询时遇到错误消息“execution error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.mapred”时,请检查上述原因,并采取相应的解决方案。如果问题仍然存在,请参考HadoopHive的文档或咨询技术支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lalaguozhe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值