为什么需要特别考虑应力后处理
熟悉有限元理论的朋友都知道,从有限元方程求解得到的直接结果是高斯积分点的位移值,而在强度等分析中,所需要的往往是应力的分布,特别是最大应力的位置和数值,为此需要采用下面的公式由已求得的节点位移推导出节点和单元的应力应变。
ε= B·d’ σ= D·B·d’
其中,D是弹性矩阵,应变矩阵B是形函数对节点位移求导后得到的矩阵。运算过程涉及求导会导致形函数多项式次数降低,因此求导得到的应力应变精度相对位移来说就会降低,给应力应变结果引入误差,其具有一定的近似性,主要表现在:
-
单元内部一般不满足平衡方程;
-
单元与单元之间交界面上的应力一般不连续。
应力后处理方法
商业有限元软件往往提供了不同的应力查看选项,比如节点、单元、角点和中心点、高斯点、平均和非平均的应力等。非平均、角点或节点应力一般来说高于平均、中心点的单元应力值。所谓角点应力是单元的高斯应力通过形函数外插到单元的节点位置得到的单元节点处的应力。
下面我们就具体看一下HyperView中应力处理的方法。
- 最简单的处理办法:不做平均,相邻单元的应力值可能不连续。从云图上看一般是离散、不够光顺的的色块,极端情况下每个单元一种颜色。
- simple平均
当use corner data选项打开时,节点400的应力等于周围4个角点应力的平均:
SN400