非参数估计与参数估计的区别,以及详细列举了常用的非参数估计方法和参数估计方法,一网打尽非参数估计与参数估计!!!

本文对比了非参数估计与参数估计在统计学中的应用,介绍了各自的优势和适用场景,重点列举了如KDE、KNN、极大似然估计等常用方法及其原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


前言

非参数估计和参数估计是统计学中的两种不同的估计方法

一、非参数估计与参数估计的区别

参数估计是指,对于已知分布形式的数据,根据样本数据推断出分布的参数值。例如正态分布的参数估计中,已知数据符合正态分布,但是其均值和方差未知,因此可以通过样本数据推断出正态分布的均值和方差。参数估计的优点在于可以使用已有的分布形式进行推断,并且可以通过极大似然估计等方法获得较准确的参数估计值。缺点在于该方法需要对样本数据分布形式进行严格的假设,并且对于不符合假设分布形式的数据,可能需要使用其他方法进行处理。

非参数估计则不依赖于已知分布形式,即在未知分布形式的情况下,对于样本数据,通过某些方法推断出其分布情况。例如,KDE方法就是一种常用的非参数密度估计方法,可以在未知数据分布形式的情况下,通过样本数据估计出其密度分布并进行分析。非参数估计的优点在于可以用于各种数据分布形式的估计,具有较高的灵活性,但是可能需要更多的样本数据进行推断,并且可能会产生过度拟合或欠拟合等问题

二、常用的非参数估计方法

  1. 核密度估计(KDE):利用核函数在数据空间中对数据进行平滑化,从而估计密度函数的一种方法。

  2. 最邻近估计(KNN):通过寻找最邻近的数据点,根据这些最邻近数据点来估计目标点的值。

  3. 分位数回归(Quantile Regression):估计因变量在不同条件下的特定分位数,而不是均值。

  4. 局部回归(Locally Weighted Regression, LWR):利用加权回归的方法来估计目标点附近加权平均值。

  5. 树型结构方法:如分类回归树(CART)和C4.5等算法。

  6. 核最小二乘法(Kernel Least Squares, KLS):一种利用核函数来估计回归函数的方法。

  7. 自适应反演估计(Adaptive Inverse Estimation, AIE):将预测问题转化为反演问题,通过求解反演问题来实现预测。

三、常用的参数估计方法

  1. 极大似然估计(Maximum Likelihood Estimation, MLE):通过寻找参数使得观测到的数据出现的概率最大化来估计参数。

  2. 最小二乘估计(Ordinary Least Squares, OLS):适用于线性回归模型,通过最小化观测值与模型预测值之间的残差平方和来估计参数。

  3. 贝叶斯估计(Bayesian Estimation):基于贝叶斯理论,利用先验信息和观测数据来估计参数,并求出后验分布。

  4. 矩估计(Method of Moments, MOM):通过样本矩与理论矩的匹配来估计参数。

  5. 近似最大似然估计(Approximate Maximum Likelihood Estimation, AMLE):在计算上会引入一些近似方法来简化计算,通常用于复杂的模型。

  6. 加权最小二乘估计(Weighted Least Squares, WLS):在最小二乘估计的基础上,对观测值进行加权处理,以更好地适应不均衡或异方差的数据。

  7. 约束估计(Constrained Estimation):在参数估计时,对参数引入约束条件,限制参数的取值范围。


总结

总结来说,非参数估计参数估计的主要区别在于是否加入主观的先验知识参数估计需要先假设数据符合某种特定的分布,然后通过抽样的样本来估计总体对应的参数;而非参数估计则是根据数据本身的特点、性质来拟合分布,能够更好地适应数据的实际情况。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值