【知识框架】优化方法基本原理:梯度下降法、牛顿法、拉格朗日对偶法

本文介绍了优化方法中的三种基本原理:梯度下降法,强调其简单易行,依赖目标函数梯度;牛顿法及其简化形式拟牛顿法,指出牛顿法因涉及海森矩阵逆而计算复杂;最后,探讨了拉格朗日对偶性在约束最优化问题中的应用,包括原始问题、对偶问题的转换及两者的关系。
摘要由CSDN通过智能技术生成

梯度下降法

梯度下降法是求解无约束最优化问题的一种最常用方法,实现简单,每一步需要求解目标函数的梯度向量。
以二元函数 z=f(x,y) 等值线俯视图为例:
这里写图片描述

牛顿法和拟牛顿法

牛顿法是求解无约束最优化问题的常用方法,收敛速度快,每一步迭代需要求解目标函数的海森矩阵的逆矩阵,计算较为复杂。

拟牛顿法则用正定矩阵近似海森矩阵的逆矩阵,简化了牛顿法。

海森矩阵(Hessian Matrix)是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。

梯度下降法 牛顿法/拟牛顿法 拉格朗日对偶性
解决问题 无约束最优化问题 约束最优化问题
目标函数要求 函数一阶偏导数存在 函数二阶偏导数存在 拉格朗日对偶性
思想 通过取负梯度来迭代更新,寻找极值点 利用极小值的必要条件——偏导数为0——来迭代更新,寻找极值点 拉格朗日对偶性

拉格朗日对偶性

在约束最优化问题中,利用拉格朗日对偶性将原始问题转换为对偶问题。

1. 原始问题

最优化问题:

minxRnf(x) min x ∈ R n f ( x )

s.t.c(x)0,i=1,2,...,k s . t . c ( x ) ≤ 0 , i = 1 , 2 , . . . , k

hj(x)=0,j=1,2,...,l h j (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值