约束优化、拉格朗日对偶问题

本文介绍了约束优化问题的分类,包括无约束、等式约束和不等式约束优化,并详细讲解了拉格朗日乘数法在解决这些问题中的应用,特别是拉格朗日对偶问题的概念、求解方法以及强弱对偶性的理解。
摘要由CSDN通过智能技术生成

优化问题分类

根据约束条件分类

  约束问题分为无约束优化问题、等式约束优化问题、不等式约束优化问题三类。

根据优化函数和约束条件分类

  线性规划问题:优化函数线性,约束函数线性;
  二次规划问题:优化函数二次,约束函数线性;
  非线性规划问题:优化函数非线性,约束函数非线性。


无约束优化

  例如求 min ⁡ f ( x , y ) \min f(x,y) minf(x,y),没有其它的等式或者不等式约束,充其量有定义域的限制。

求解方法

  根据Fermat定理,求导,若无解析解,可借助梯度下降法、牛顿法等。


等式约束优化

  在无约束优化问题的基础上,加了一些等式约束条件。举例:
min ⁡ f ( x , y ) s . t . ( s u b j e c t   t o )         h i ( x , y ) = 0 , i = 1 , 2 … \begin{aligned} & \min f(x,y)\\ & s.t. (subject~to)~~~~~~~h_{i}(x,y)=0, i=1,2 \dots \end{aligned} minf(x,y)s.t.(subject to)       hi(x,y)=0,i=1,2
  除了最基本的目标函数外,还有若干等式约束条件。

求解方法

  利用拉格朗日乘数法,构造拉格朗日函数。
L ( x , y , α ) = f ( x , y ) + ∑ α i h i ( x , y ) L(x,y,\alpha)=f(x,y)+\sum \alpha_{i}h_{i}(x,y) L(x,y,α)=f(x,y)+αihi(x,y)
  对自变量x,y和拉格朗日乘子 α \alpha α求偏导,结果等于0,构造i+2个方程
{ ▽ x , y L = 0 ▽ α L = 0 \left\{ \begin{aligned} \bigtriangledown _{x,y} L & = 0 \\ \bigtriangledown _{\alpha } L & = 0 \end{aligned} \right. { x,yLαL=0=0
  解得 x , y , α x,y,\alpha x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值