drag diffusion中的gradio代码逐行解析(二)

1.gr.Number(数字):用于处理数值输入和输出。数值可以选择False,不可见功能。

2.gr.Slider(滑块):用于创建可拖动的滑块,用于选择范围内的数值。

3.gr.Dropdown(下拉选项):创建下拉选项菜单,方便用户进行选择。

with gr.Tab("Base Model Config"):
    with gr.Row():
        local_models_dir = 'local_pretrained_models'
        local_models_choice = \
        [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
        model_path = gr.Dropdown(value="runwayml/stable-diffusion-v1-5",
                    label="Diffusion Model Path",
                    choices=[
                        "runwayml/stable-diffusion-v1-5",
                    ] + local_models_choice)

        vae_path = gr.Dropdown(value="default",
                    label="VAE choice",
                    choices=["default",
                    "stabilityai/sd-vae-ft-mse"] + local_models_choice
                )

4.loraParameters模块:

 with gr.Tab("LoRA Parameters"):
     with gr.Row():
         lora_step = gr.Number(value=200, label="LoRA training steps", precision=0)
         lora_lr = gr.Number(value=0.0002, label="LoRA learning rate")
         lora_rank = gr.Number(value=16, label="LoRA rank", precision=0)

5.gr.Button("Generate Image")创建按钮,用户可以点击按钮执行特定的操作。

6.使用click()方法监听组件的点击事件。

select()用于监听用户在组件中的选择事件。

canvas.edit( store_img, [canvas], [original_image, selected_points, input_image, mask] )

input_image.select( get_points,[input_image, selected_points], [input_image],)

undo_button.click(undo_points,[original_image, mask], [input_image, selected_points])

 7.demo.queue().launch(share=True, debug=True)

可以在launch()方法中传递share=True,实现demo的分享,有效时间只有72小时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

。七十二。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值