Pruning convolutional neural networks for resource efficent inference

这是篇2017年ICLR的会议,文章提出了一种基于泰勒展开的网络剪枝方法。文章认为,这里一类的剪枝方法一般分为三类:

  • 一个已经训练好的网络
  • 基于一定的准则在修剪和微调反复
  • 适时地停止

 

所以,这个修剪的“准则”就十分的重要,文章列出了一些以往的准则:

  • Minimun weight:训练时加入L1或L2正则化,并修剪权值小于某一阈值的权重
  • Activation:修剪经激活层后与small activation value 相关联的权值
  • Mutual iformation :互信息可以衡量两个量的相关程度,用互信息量衡量一个输出和权值之的关系并进行剪枝

然后,就是文章推出的Talor expansion:

  • 取损失函数的一阶展开为损失函数. 

从结果上来看,基于泰勒展开的剪枝方法好于前面提出的几种方法:

 

总结:

 这篇文提出的想法本质上是对损失函数的“变型”,创新点没有太多可圈可点的地方。因为泰勒展开的万能性,使其用在哪都有一定的作用。但网络剪枝的criteria-based应该更加地深入。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值