蓝桥杯 算法训练 传球游戏

这是一个关于蓝桥杯算法训练的传球游戏问题,通过动态规划方法解决。定义dp[i][j]表示经过i次传球后球在第j个学生手中的方法数。状态转移方程为dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1],考虑到环形排列的特殊情况,如第1个和第n个学生的相邻关系。给出的C++代码实现能够计算出传球m次后的结果。
摘要由CSDN通过智能技术生成
  问题描述】
  上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
  游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
  聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值