faster RCNN/YOLO/SSD算法的比较

只要是做过物体检测(object detection)的人,都会对这三种算法比较熟悉,起码听说过。那么这三种算法各自有什么特点呢?为什么他们不能相互取代?接下来我们将慢慢分析。

在介绍具体算法之前,先来看下常用的数据集

pascal voc包含20类
其中,voc 07:9,963 张图片中包含了24,640个已标记物体
voc 12:测试数据集没有公开,在训练和验证数据集中的11540 张图片包含了27450个已标记的物体

coco在物体检测任务中包含80类(主要类别有91类)
coco2015 : 328k 张图片中大约有2.5 million个已标记的物体

faster RCNN

这个算法是一个系列,是RBG大神最初从RCNN发展而来,RCNN->fast RCNN->faster RCNN,那么简单的介绍下前两种算法。

首先RCNN,在这个算法中神经网络实际上就是一个特征提取器,作者用selective search的方法提取了一定数量(2000个)region proposal,然后对region proposal做卷积操作,将fc7这一层的特征提取出来用于分类和坐标回归,这里分类用的还不是softmax而是SVM。这个算法的贡献主要是提出了一种有效的特征利用方式,后续很多人在工程实践中都是用的fc7层的特征来做基于faster RCNN的应用。

到fast RCNN,fast RCNN将除了region proposal提取以外的部分都用一个网络来实现,与RCNN不同的是,1)他的分类和坐标回归的loss一起通过反向传播来更新网络参数;2)它在提取feature时并不会把每个region proposal都放入提取,而是将整幅图提取特征后,用坐标映射的方式提取feature,这样有两个好处a)快,因为一张图片只走一次网络;b)feature的特征受感受野的影响,能融合相邻的背景的特征,这样“看”得更远一些。

最后是faster RCNN,作者发现selective search的方法导致算法没有实时性的可能,因此,作者尝试用region proposal network来取代selective search的方法,并且与fast RCNN的分类和回归网络共用特征提取层,因此这样并不会带来太多额外的计算量,而实验结果也表明了,作者这样做确实提高的速度,并且还提高了准确率。因此,综上所述,region proposal network是faster RCNN的精华所在,也是精度高于以及速度慢于后续YOLO和SSD算法的原因。

YOLO

YOLO个人平时接触的不多,对YOLO v2也知之甚少,不敢妄言,这里简单介绍下YOLO v1

YOLO的一个贡献是将检测问题转化为了回归问题,相信这句话很多人见过很多次了。那到底是什么意思呢?指的就是之前faster RCNN是先分两步,先提取region proposal,也就是判断是前景还是背景的问题,之后再分类,具体看前景是什么东西。而YOLO直接通过regression一次既产生坐标,又产生每种类别的概率。

YOLO的特点在于快,其中一方面来源于regression机制,还有一个原因就在于region proposal的提取过程了。再YOLO中很少提region proposal的概念,但是为了类比faster RCNN我们可以这样理解,YOLO中粗暴地分成了7X7的网格,每个位置默认可能属于2个object,那么事实上就是提取了98个region proposal,而faster RCNN是一种滑动窗口机制,每个feature map上都回归出9个anchor,大约一共20k个anchor,在通过非极大值抑制等方法最终会得到300个region proposal。两者之间候选框差别巨大,因此,faster RCNN会准一点也是情理之中,而既然每个位置都要精修,当然效率就会低很多,也就不能满足实时性要求了。另外,YOLO精简了网络,比VGG要稍微计算量小一些,可能也会加快一些速度,但这些计算量比起前面提到的两点已经不足为道。

SSD

SSD有人说是faster RCNN和YOLO的结合体,是有道理的。首先说SSD的贡献,它的贡献在于它利用了多层网络特征,而不仅仅是FC7。那么为什么说它像YOLO呢,这主要是因为,SSD还是借鉴了detection转化为regression的机制,而说它像faster RCNN是因为借鉴了anchor的机制,只不过它的anchor不是每个位置的精调,是跟YOLO一样画网格,然后在网格上产生anchor,由于利用了多层特征,anchor的scale每层都不同,因此产生了较多的超参数,增加了训练难度。

所以说,三种算法在实际应用中faster RCNN鲁棒性会可能会强一些,但是鱼与熊掌不可兼得,速度也会较慢。

### 回答1: yolov5、faster rcnnssd都是目标检测算法,它们的主要区别在于检测速度准确率。 yolov5是一种基于深度学习的目标检测算法,它采用了一种新的检测方法,称为YOLO(You Only Look Once),可以实现实时目标检测。相比于faster rcnnssdyolov5的检测速度更快,但准确率稍低。 faster rcnn是一种基于深度学习的目标检测算法,它采用了一种叫做Region Proposal Network(RPN)的方法来生成候选框,然后再对候选框进行分类回归。相比于yolov5ssdfaster rcnn的准确率更高,但检测速度较慢。 ssd是一种基于深度学习的目标检测算法,它采用了一种叫做Single Shot Multibox Detector(SSD)的方法,可以在一次前向传递中同时进行目标分类位置回归,从而实现实时目标检测。相比于yolov5faster rcnnssd检测速度更快,但准确率稍低。 综上所述,yolov5适合需要快速检测的场景,faster rcnn适合需要高准确率的场景,ssd适合需要快速检测且准确率要求不高的场景。 ### 回答2: YOLOv5、Faster RCNNSSD都是目标检测算法,它们各有优缺点。下面,我们将分别介绍它们的特点及比较YOLOv5 YOLOv5是目前YOLO系列中效果最佳的一个版本。它通过模型深度的加强、精度的提升以及前后处理模块的优化,使得在速度上相对于之前的版本取得了很大的提升。 优点:YOLOv5 对于不同尺寸不同类别的物体都具有很好的识别能力,而且在速度上非常快,能够实现实时检测。 缺点:YOLOv5 在小物体检测上存在一些问题,因为它的网络结构较为简单。此外,对于小目标YOLOv5的检测误差会更大。 Faster RCNN Faster RCNN是一种多阶段的检测算法。相较于YOLOv5,Faster RCNN在识别方面相对更加准确,但速度较慢。 优点:在目标检测上,Faster RCNN 的准确度要比YOLOv5 更好,并且在小目标检查上能够表现出更高的精度。此外,在训练过程中,能够较好地对图像进行特征提取,从而提高精度。 缺点:Faster RCNN 的速度比YOLOv5 慢,不适用于实时监测应用。 SSD SSD是一种单阶段的目标检测算法,与YOLOv5 相近。它通过特征提取、尺度变换卷积处理三个步骤,快速捕捉出目标的位置。 优点:在速度方面,SSDYOLOv5 类似,都具有较快的检测速度,并且对于尺寸较小的目标能够进行较为准确的识别。 缺点:对于尺寸较大的目标,SSD 的精度要略低于Faster RCNN,准确度不如其它两者。 综合来说,YOLOv5 适合于对速度有较高要求,但精度不要求过高的场景;Faster RCNN 适用于对精度有较高要求,但速度不要求过快的场景;SSD 适合对速度有一定要求,对精度要求不是那么高的场景。在实际应用中,需要根据目标检测的要求来选择合适的算法来完成任务。 ### 回答3: YOLOv5、Faster R-CNNSSD都是目标检测的重要算法,它们各有千秋,下面将分别从速度、精确度、鲁棒性等方面进行对比。 首先从速度方面分析,通常来说,YOLOv5的速度要优于其他两种算法,因为它只需要一次前向传播就可以完成目标检测任务。而Faster R-CNNSSD需要多层卷积过程,需要多次前向传播,所以速度不如YOLOv5。但是在实际应用中,还需要考虑模型的存储计算量,不能只看前向传播速度。从这个角度来看,SSD由于模型较小,在低功耗设备上运行速度较快。 其次,从精确度方面分析,三个算法的精确度都不错,但因为它们的设计思路不同,所以精确度略有不同。Faster R-CNNSSD在小目标检测方面表现较好,而YOLOv5在大目标检测方面表现更优秀,并且YOLOv5在基于预训练模型的迁移学习方面效果更为出色。 最后,鲁棒性方面的对比,通常来说,YOLOv5比SSDFaster R-CNN更鲁棒,因为YOLOv5是用完全卷积网络完成检测任务,可以自适应不同大小的输入图像以及场景中不同的各种目标。而Faster R-CNNSSD为了提高精确度,需要更多的先验知识设计,所以对于某些不同或极端的场景,检测效果可能会降低。 综上所述,YOLOv5、Faster R-CNNSSD各有千秋,在实际应用场景中选用需要根据具体情况进行综合考虑,根据场景的不同选择合适的算法是非常重要的。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值