第一个Tensorflow程序

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lansetiankong2104/article/details/79945354
import tensorflow as tf
import numpy as np
# 使用numpy随机生成100个点
data_x = np.random.rand(100)
data_y = data_x * 0.2 + 0.4

# 构造一个线性模型
k = tf.Variable(0.)
b = tf.Variable(0.)
y = k * data_x + b

# 损失函数
loss = tf.reduce_mean(tf.square(data_y-y))
# 定义梯度下降法进行训练的优化器
optimizer = tf.train.GradientDescentOptimizer(0.1)
# 最小化损失函数
train = optimizer.minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for step in range(201):
        sess.run(train)
        if step % 20 == 0:
            print(step, sess.run([k,b]))

训练200次,每次执行一次train函数,train函数作用是最小化data_y与y的差值,这是通过梯度下降这个optimizer改变k和b的值来实现的。loss越小,k和b越接近真实结果;k和b越接近真实结果,loss越小。

注意在初始变量的时候,初始化为float,写0会报错(训练结果是小数):

k = tf.Variable(0.)

写每20次打印一下k和b的训练结果:

if step % 20 == 0:

    print(step, sess.run([k,b]))


阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页