消除锯齿的方法很多,它们有各自不同的应用情况,不能一概而论,那样往往得不到好的效果。
如何能较好的水除锯齿,并且能很好的保持图像的细节,因为顾此失彼的话,这样会把事情弄的更糟。
最近我看了不少的关于这方面的论文,其中的一篇,让我觉得很是不错,但是论文的内容写的过于简略,很多的细节没有给出。在此我介绍一个它的大概的思想:首先通过分水岭算法得到图像的边缘(Unsupervised watershed-driven region-based image retrieval),然后,在不同类型的图像区域进行不同类型的插值;它在区域内的点进行线性插值,而区域间的过渡点进行非线性插
值;如果你细想一下,就会觉得这个方法是不错的,因为在比较平缓的区域,实现一般的插值就OK 了,重要的是图像边界的
插值;
看了很多的资料无果,只有自力更生了;
其实上面介绍的这种方法也许并不适合隔行扫描的就应用,要具体问题具体分析,这样才能找到最为合适的方法;
经过分析,发现在恢复的图像中产生锯齿的原因是,没有经过判断,而是直接对它进行插值平均,所以产生了明显的锯齿;若我们在插值之前,对所要恢复的像素的周围的像素的差值大小进行一次比较,选择最为接近的方向的像素作为恢复像素的插值像素,那样图你的边缘就能得到很好的保持;为避免较大的计算复杂度,我们仅选取图像周围的六个像素,鉴于以上的想法,进行程序设计,所得到的插值图像如