隔行扫描之锯齿消除(2)

本文分析了图像锯齿产生的原因,提出一种基于分水岭算法和区域插值的方法来消除隔行扫描图像的锯齿。通过在平缓区域进行线性插值,边界处采用非线性插值,以保持图像细节。实验结果显示,通过比较周围像素差值选择最接近的像素进行插值,能有效改善图像质量。对比了简单插值、RGB插值和YUV插值的效果,YUV插值在保持图像质量方面表现出色。
摘要由CSDN通过智能技术生成

 

消除锯齿的方法很多,它们有各自不同的应用情况,不能一概而论,那样往往得不到好的效果。

 

如何能较好的水除锯齿,并且能很好的保持图像的细节,因为顾此失彼的话,这样会把事情弄的更糟。

 

最近我看了不少的关于这方面的论文,其中的一篇,让我觉得很是不错,但是论文的内容写的过于简略,很多的细节没有给出。在此我介绍一个它的大概的思想:首先通过分水岭算法得到图像的边缘(Unsupervised watershed-driven region-based image retrieval),然后,在不同类型的图像区域进行不同类型的插值;它在区域内的点进行线性插值,而区域间的过渡点进行非线性插

值;如果你细想一下,就会觉得这个方法是不错的,因为在比较平缓的区域,实现一般的插值就OK 了,重要的是图像边界的

插值;

 

看了很多的资料无果,只有自力更生了;

 

其实上面介绍的这种方法也许并不适合隔行扫描的就应用,要具体问题具体分析,这样才能找到最为合适的方法;

 

经过分析,发现在恢复的图像中产生锯齿的原因是,没有经过判断,而是直接对它进行插值平均,所以产生了明显的锯齿;若我们在插值之前,对所要恢复的像素的周围的像素的差值大小进行一次比较,选择最为接近的方向的像素作为恢复像素的插值像素,那样图你的边缘就能得到很好的保持;为避免较大的计算复杂度,我们仅选取图像周围的六个像素,鉴于以上的想法,进行程序设计,所得到的插值图像如

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值