一种简单的抗锯齿算法

        在LCD等显示器上逐点绘制几何图像的时候, 往往对几何体的边缘采样不足, 这就会导致出现锯齿状不平滑的边缘. 为了尽量减弱这种现象,需要在斜线或物体边缘进行更密集的采样,然后根据一定的权重比例将色彩/亮度等值分配到周边象素点, 使得其看起来有平滑过渡的效果. 下面是一种简单的抗锯齿算法.

        如图所示, 0,1,2,3象素点各按照覆盖的面积来分配得到其色彩/亮度值, 这里我们通过ALPHA的权重来配置. 采样点和象素中心点的偏离值dxdy决定了覆盖区域的位置. 显然, 如果采样点和象素中心点重合的话, 仅有一个象素点起作用或发亮, 这种情况下采样点也恰好在整数点位置. 加密斜线上的采样点,每隔0.5个单位绘制采样点, 使色彩扩散到周边的象素点位上, 这样整条线条的边缘看起来就会有平滑的过渡效果. 简单,但是很有效果!
        为计算方便,将采样点的整点位置设在象素格的左下角,而不是中心位置.

        对于几何面体,仅在边缘线采用抗锯齿算法,其内部尽可逐点填色,这样可以大大节省CPU算力。

画点函数的C代码:   

void fdraw_dot(FBDEV *fbdev, float x, float y)
   {
        int ix=floor(x); /* Grid xy as for pixel coordinates. ix,iy 采样点的整数点位(为计算方便, 这里取象素左下角点) */
        int iy=floor(y);
        float dx=x-ix;   /* Deviation dx/dy 偏离值 */
        float dy=y-iy; 

        /* (ix,iy) */
        fbdev->pixalpha=255.0*(1.0-dx)*(1.0-dy);  /* 这里设象素格和影响区的边长均为1 */
        draw_dot(fbdev, ix,iy);

        /* (ix, iy+1) */
        fbdev->pixalpha=255.0*(1.0-dx)*dy;
        draw_dot(fbdev, ix,iy+1);

        /* (ix+1, iy) */
        fbdev->pixalpha=255.0*dx*(1.0-dy);
        draw_dot(fbdev, ix+1,iy);

        /* (ix+1, iy+1) */
        fbdev->pixalpha=255.0*dx*dy;
        draw_dot(fbdev, ix+1,iy+1);
   }
void fdraw_line(FBDEV *dev, float x1, float y1, float x2, float y2)
{
	float k;
	float xx,yy;
	float step=0.75;  /* point sampling step, step=DX(DY)=0.5 OR step=DL=0.75 */
	float tmp;

	/* If the same pixel */
	if( fabsf(x2-x1)<0.1 && fabsf(y1-y2)<0.1 ) {
		fdraw_dot(dev, x1, y1);
		return;
	}

	/* Calculate slope k */
	if( x2==x1 ) {  /* Vertical line */
		k=1.0e8;
	}
	else
		k=(y2-y1)/(x2-x1);

	if( fabsf(k)<1.0 ) {
#if 1		/* Re_Cal step to let step=dl */
		step=step/sqrt(k*k+1.0);
#endif
		/* Swap (x1,y1) and (x2,y2), to make sure x2 >= x1 always */
		if(x1>x2) {
			tmp=x1;	x1=x2; x2=tmp;
			tmp=y1; y1=y2; y2=tmp;
		}
	   	/* NOW: x2>=x1 */

		for(xx=x1; xx<x2; xx+=step ) {
			fdraw_dot(dev, xx,  y1+k*(xx-x1));
		}
		/* Draw the END piont */
		fdraw_dot(dev, x2, y2);
	}
	else { /* fabsf(k)>=1.0 */
#if 1		/* Re_Cal step to let step=dl */
		step=fabsf(step*k/sqrt(k*k+1.0));
#endif
		/* Swap (x1,y1) and (x2,y2), to make sure y2 >= y1 always */
		if(y1>y2) {
			tmp=y1;	y1=y2; y2=tmp;
			tmp=x1; x1=x2; x2=tmp;
		}
	   	/* NOW: y2>=y1 */

		for(yy=y1; yy<y2; yy+=step ) {
			fdraw_dot(dev, x1+(yy-y1)/k, yy);
		}
		/* Draw the END piont */
		fdraw_dot(dev, x2, y2);
	}
}

(更多代码见 https://github.com/widora/wegi)

  在320x240LCD上的实际效果:

(上图未应用抗锯齿算法)

                                          

  

(上图应用了抗锯齿算法)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Midas-Zhou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值