我们知道numpy的数据其实是一块连续的内存空间,我们在操作的时候需要注意我们操作的是view还是copy,否则的话,我们可能会修改我们不希望修改的数据。
view只是一个指向同一块内存的指针而已,两者相互影响
copy是把原始内容copy了一份,两者不相互影响
Numpy中的基础slice都只是创建一个view
使用slice之后,你可以使用以下的一些方法来判断两个不同的array是否共享数据
- np.may_share_memory/np.shares_memory
- ndarray.base是否相等
但是如果是fancy slice和你显式的要求numpy copy数据的话,它返回的是copy;
flatten也会返回一个copy;
ravel在某些情况下也会返回一个copy(例如你期望的是C连续,但是所给的数据是F连续的)