B-Battle Royale

给一个大圆,只能在大圆范围内行走。
再在大圆内部给一个小圆,不能从小圆上行走。
指定了出发点和目的地s t,问从s到t的最短路径长度。

很显然如果线段与圆不相交,直接走过去就行。
线段如果与圆相交,则先沿着点到圆的切线走到圆上,再在圆上走过一段弧,最后相切走到目的地。

关键点:判断线段是否与圆相交
通过画图可以发现,如果相交,则能找到两个相切三角形。
两个相切三角形,圆心那个顶点的角相加应小于s与t到圆心连线的夹角。
所以只需要将大角与两个三角形的角比较即可。
不要忘了顺带存一下二者的差(也就是中间圆弧对应角),算圆弧长度的时候还要用上。

#include<bits/stdc++.h>
using namespace std;

double rad;     //记录弧度值

struct node{
    double x,y;
};

double gd(node a,node b){   //获取两点距离
    return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y));
}

double gd2(node a,node b){  //获取两点距离的平方,为了保持精度不宜先计算d后平方,建议直接不开方再写个函数
    return (b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y);
}

double dj(node from,node to1,node to2){ //点积
    double x1=from.x-to1.x;
    double x2=from.x-to2.x;
    double y1=from.y-to1.y;
    double y2=from.y-to2.y;
    return x1*x2+y1*y2;
}

struct line{
    node n1,n2;
    double d;
    void build(node a,node b){
        n1=a;
        n2=b;
        d=gd(n1,n2);
    }
    bool check(node a,double r){    //检查圆是否与直线相交,a为圆心,r为半径
        double d1=gd(a,n1);
        double j1=acos(r/d1);
        double d2=gd(a,n2);
        double j2=acos(r/d2);
        double j=j1+j2;     //相切三角形的二角之和
        double k=acos(dj(a,n1,n2)/(d1*d2)); //(d1*d2)一定要带着括号,不然变成了先/d1后*d2,导致wa
        rad=k-j;    //获取中间圆弧的弧度
        if(rad>0) return 1;//相交
        return 0;//不相交
    }
};

int main(){
    double ans=0;
    double r;
    node s,t,o;
    line l;
    cin>>s.x>>s.y;
    cin>>t.x>>t.y;
    cin>>o.x>>o.y>>r;   //大圆没用,后面直接覆盖掉
    cin>>o.x>>o.y>>r;
    l.build(s,t);
    if(!l.check(o,r)){
        cout<<l.d;
    }else{
        ans+=sqrt(gd2(s,o)-r*r);
        ans+=sqrt(gd2(o,t)-r*r);
        ans+=rad*r;
    }
    cout<<setiosflags(ios::fixed)<<setprecision(10)<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值