给一个大圆,只能在大圆范围内行走。
再在大圆内部给一个小圆,不能从小圆上行走。
指定了出发点和目的地s t,问从s到t的最短路径长度。
很显然如果线段与圆不相交,直接走过去就行。
线段如果与圆相交,则先沿着点到圆的切线走到圆上,再在圆上走过一段弧,最后相切走到目的地。
关键点:判断线段是否与圆相交
通过画图可以发现,如果相交,则能找到两个相切三角形。
两个相切三角形,圆心那个顶点的角相加应小于s与t到圆心连线的夹角。
所以只需要将大角与两个三角形的角比较即可。
不要忘了顺带存一下二者的差(也就是中间圆弧对应角),算圆弧长度的时候还要用上。
#include<bits/stdc++.h>
using namespace std;
double rad; //记录弧度值
struct node{
double x,y;
};
double gd(node a,node b){ //获取两点距离
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y));
}
double gd2(node a,node b){ //获取两点距离的平方,为了保持精度不宜先计算d后平方,建议直接不开方再写个函数
return (b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y);
}
double dj(node from,node to1,node to2){ //点积
double x1=from.x-to1.x;
double x2=from.x-to2.x;
double y1=from.y-to1.y;
double y2=from.y-to2.y;
return x1*x2+y1*y2;
}
struct line{
node n1,n2;
double d;
void build(node a,node b){
n1=a;
n2=b;
d=gd(n1,n2);
}
bool check(node a,double r){ //检查圆是否与直线相交,a为圆心,r为半径
double d1=gd(a,n1);
double j1=acos(r/d1);
double d2=gd(a,n2);
double j2=acos(r/d2);
double j=j1+j2; //相切三角形的二角之和
double k=acos(dj(a,n1,n2)/(d1*d2)); //(d1*d2)一定要带着括号,不然变成了先/d1后*d2,导致wa
rad=k-j; //获取中间圆弧的弧度
if(rad>0) return 1;//相交
return 0;//不相交
}
};
int main(){
double ans=0;
double r;
node s,t,o;
line l;
cin>>s.x>>s.y;
cin>>t.x>>t.y;
cin>>o.x>>o.y>>r; //大圆没用,后面直接覆盖掉
cin>>o.x>>o.y>>r;
l.build(s,t);
if(!l.check(o,r)){
cout<<l.d;
}else{
ans+=sqrt(gd2(s,o)-r*r);
ans+=sqrt(gd2(o,t)-r*r);
ans+=rad*r;
}
cout<<setiosflags(ios::fixed)<<setprecision(10)<<ans;
return 0;
}