随机森林,属于集成算法bagging的一种,关于什么是bagging看这里 决策树系列(一):集成学习(ensemble learning)->boosting与bagging的区别
1、简单原理以及特点
1)随机森林,属于集成算法bagging的一种,由多个基分类器组合而成,最终的预测结果是多个基分类器结果的平均值(回归问题)/众数(分类问题)。
2)各个基分类器之间相互独立,使用的基分类器是CART,CART是分类回归树,既可以用来分类,也可以用来进行回归。CART用作回归树时用平方误差最小化作为选择特征的准则,用作分类树时采用基尼指数最小化原则(该原则不关心具体的特征值,只跟特征的分布有关,百度一下gini指数的计算公式就能明白),进行特征选择,递归地生成二叉树。
3)在生成每一棵树的时候,都随机从原样本集中有放回的进行采样(自主采样),生成一个子集。并且也随机从M个特征里面挑选m(m小于M)个特征,用这些样本和特征训练该决策树。随机选样本,随机选特征。
4)每棵树都尽最大程度的生长,并且没有剪枝过程。这个不必担心过拟合的问题,因为在构建每一棵树时,用于训练的样本是原样本集的子集,特征也是原特征的子集,让该树无限生长,虽然会导致该树过拟合,但是也只是在该子集上过拟合,而不是在原样本集上过拟合。随机森林会有若