决策树系列(二):随机森林(random forest)

随机森林是一种集成学习算法,基于bagging思想,通过构建多棵决策树并取平均(回归)或多数投票(分类)来预测结果。每个决策树在构建时对样本和特征进行随机抽样,避免过拟合。它具有高准确率、处理高维数据、评估特征重要性等优点。特征重要性可通过Variable importance(特征被分割的总次数)和Gini importance(分割的总增益之和)进行衡量。
摘要由CSDN通过智能技术生成

随机森林,属于集成算法bagging的一种,关于什么是bagging看这里 决策树系列(一):集成学习(ensemble learning)->boosting与bagging的区别

1、简单原理以及特点

1)随机森林,属于集成算法bagging的一种,由多个基分类器组合而成,最终的预测结果是多个基分类器结果的平均值(回归问题)/众数(分类问题)。
2)各个基分类器之间相互独立,使用的基分类器是CART,CART是分类回归树,既可以用来分类,也可以用来进行回归。CART用作回归树时用平方误差最小化作为选择特征的准则,用作分类树时采用基尼指数最小化原则(该原则不关心具体的特征值,只跟特征的分布有关,百度一下gini指数的计算公式就能明白),进行特征选择,递归地生成二叉树。
3)在生成每一棵树的时候,都随机从原样本集中有放回的进行采样(自主采样),生成一个子集。并且也随机从M个特征里面挑选m(m小于M)个特征,用这些样本和特征训练该决策树。随机选样本,随机选特征。
4)每棵树都尽最大程度的生长,并且没有剪枝过程。这个不必担心过拟合的问题,因为在构建每一棵树时,用于训练的样本是原样本集的子集,特征也是原特征的子集,让该树无限生长,虽然会导致该树过拟合,但是也只是在该子集上过拟合,而不是在原样本集上过拟合。随机森林会有若

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值