题目描述
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树
示例1
输入:
{1,2,3,4,5,6,7}
返回值:
true
题解
方法一:自顶向下
判断一个数是否为平衡二叉树。平衡二叉树是左子树的高度与右子树的高度差的绝对值小于等于1,同样左子树是平衡二叉树,右子树为平衡二叉树。
根据定义,如果我们能够求出以每个结点为根的树的高度,然后再根据左右子树高度差绝对值小于等于1,,就可以判断以每个结点为根的树是否满足定义。
我们可以用hash<TreeNode*, int>
来存以每个结点的树的高度。
代码如下:
map<TreeNode*, int> hs;
int depth(TreeNode *root) {
if (!root) return 0;
if (hs.find(root) != hs.end()) return hs[root];
int ldep = depth(root->left);
int rdep = depth(root->right);
return hs[root] = max(ldep, rdep) + 1;
}
然后再用先序遍历:根节点、左子树、右子树
来判断以每个结点为根的树是否满足条件。
代码如下:
bool judge(TreeNode *root) {
if (!root) return true;
return abs(hs[root->left] - hs[root->right]) <= 1 &&
judge(root->left) && judge(root->right);
}
最后的代码为:
class Solution {
public:
map<TreeNode*, int> hs;
int depth(TreeNode* root){
if(!root)
return 0;
if(hs.find(root) != hs.end())
return hs[root];
int ldep = depth(root->left);
int rdep = depth(root->right);
return hs[root] = max(ldep, rdep) + 1;
}
bool judge(TreeNode* root){
if(!root)
return true;
return abs(hs[root->left] - hs[root->right]) <= 1 && judge(root->left) && judge(root->right);
}
bool IsBalanced_Solution(TreeNode* pRoot) {
depth(pRoot);
return judge(pRoot);
}
};
方法二:自底向上
方法一是先求出以每个结点为根的树的高度,然后再判断,其实可以直接再求高度的同时,直接判断即可。
利用后序遍历:左子树、右子树、根节点
,可以先递归到叶子节点,然后在回溯的过程中来判断是否满足条件。
求树的高度的代码为:
int depth(TreeNode *root) {
if (!root) return 0;
int ldep = depth(root->left);
int rdep = depth(root->right);
return max(ldep, rdep) + 1;
}
然后对上述代码加以改造,如果不满足平衡二叉树的定义,则返回-1,并且如果左子树不满足条件了,直接返回-1,右子树也是如此,相当于剪枝,加速结束递归。
代码如下:
int depth(TreeNode *root) {
if (!root) return 0;
int ldep = depth(root->left);
if (ldep == -1) return -1;
int rdep = depth(root->right);
if (rdep == -1) return -1;
int sub = abs(ldep - rdep);
if (sub > 1) return -1;
return max(ldep, rdep) + 1;
}
最后只需要判断depth(root)返回的是否为-1,如果是-1,则不是,否则,则是。
代码如下:
class Solution {
public:
int depth(TreeNode* root){
if(!root)
return 0;
int ldep = depth(root->left);
if(ldep == -1)
return -1;
int rdep = depth(root->right);
if(rdep == -1)
return -1;
int sub = abs(ldep - rdep);
if(sub > 1)
return -1;
return max(ldep, rdep) + 1;
}
bool IsBalanced_Solution(TreeNode* pRoot) {
return depth(pRoot) != -1;
}
};