剑指offer-39 -- 平衡二叉树 - C++

本文介绍了如何判断一棵二叉树是否为平衡二叉树,提供了两种方法:自顶向下和自底向上。自顶向下方法首先计算每个节点的树高度并存储,然后通过先序遍历来判断;自底向上方法则在计算高度的同时进行判断,利用后序遍历实现。两种方法均能有效识别平衡二叉树。
摘要由CSDN通过智能技术生成

题目描述

输入一棵二叉树,判断该二叉树是否是平衡二叉树。

在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树

示例1

输入:

{1,2,3,4,5,6,7}

返回值:

true

题解

方法一:自顶向下

判断一个数是否为平衡二叉树。平衡二叉树是左子树的高度与右子树的高度差的绝对值小于等于1,同样左子树是平衡二叉树,右子树为平衡二叉树。

根据定义,如果我们能够求出以每个结点为根的树的高度,然后再根据左右子树高度差绝对值小于等于1,,就可以判断以每个结点为根的树是否满足定义。
我们可以用hash<TreeNode*, int>来存以每个结点的树的高度。

代码如下:

map<TreeNode*, int> hs;
int depth(TreeNode *root) {
    if (!root) return 0;
    if (hs.find(root) != hs.end()) return hs[root];
    int ldep = depth(root->left);
    int rdep = depth(root->right);
    return hs[root] = max(ldep, rdep) + 1;
}

然后再用先序遍历:根节点、左子树、右子树来判断以每个结点为根的树是否满足条件。
代码如下:

bool judge(TreeNode *root) {
    if (!root) return true;
    return abs(hs[root->left] - hs[root->right]) <= 1 && 
    judge(root->left) && judge(root->right);
}

最后的代码为:

class Solution {
public:
    map<TreeNode*, int> hs;
    int depth(TreeNode* root){
        if(!root)
            return 0;
        if(hs.find(root) != hs.end())
            return hs[root];
        int ldep = depth(root->left);
        int rdep = depth(root->right);
        return hs[root] = max(ldep, rdep) + 1;
    }
    bool judge(TreeNode* root){
        if(!root)
            return true;
        return abs(hs[root->left] - hs[root->right]) <= 1 && judge(root->left) && judge(root->right);
    }
    bool IsBalanced_Solution(TreeNode* pRoot) {
        depth(pRoot);
        return judge(pRoot);
    }
};

方法二:自底向上

方法一是先求出以每个结点为根的树的高度,然后再判断,其实可以直接再求高度的同时,直接判断即可。
利用后序遍历:左子树、右子树、根节点,可以先递归到叶子节点,然后在回溯的过程中来判断是否满足条件。
求树的高度的代码为:

int depth(TreeNode *root) {
    if (!root) return 0;
    int ldep = depth(root->left);
    int rdep = depth(root->right);
    return max(ldep, rdep) + 1;
}

然后对上述代码加以改造,如果不满足平衡二叉树的定义,则返回-1,并且如果左子树不满足条件了,直接返回-1,右子树也是如此,相当于剪枝,加速结束递归。
代码如下:

int depth(TreeNode *root) {
    if (!root) return 0;
    int ldep = depth(root->left);
    if (ldep == -1) return -1;
    int rdep = depth(root->right);
    if (rdep == -1) return -1;
    int sub = abs(ldep - rdep);
    if (sub > 1) return -1;
    return max(ldep, rdep) + 1;
}

最后只需要判断depth(root)返回的是否为-1,如果是-1,则不是,否则,则是。
代码如下:

class Solution {
public:
    int depth(TreeNode* root){
        if(!root)
            return 0;
        int ldep = depth(root->left);
        if(ldep == -1)
            return -1;
        int rdep = depth(root->right);
        if(rdep == -1)
            return -1;
        int sub = abs(ldep - rdep);
        if(sub > 1)
            return -1;
        return max(ldep, rdep) + 1;
    }
    bool IsBalanced_Solution(TreeNode* pRoot) {
        return depth(pRoot) != -1;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值