搜索 2 叉树

🏷️ 二叉搜索树的概念

二叉搜索树 (BsT,BinarySearchTree) 也称二叉排序树或二叉查找树
二叉搜索树:一棵二叉树,可以为空;如果不为空,
满足以下性质:

  1. 非空左子树的所有键值小于其根结点的键值。
  2. 非空右子树的所有键值大于其根结点的键值。
  3. 左、右子树都是二叉搜索树

🏷️ 二叉搜索树操作

📌 我们有如下,搜索二叉树

在这里插入图片描述

📌 二叉搜索树的查找

a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。

b、最多查找高度次,走到到空,还没找到,这个值不存在。

        // 查找
        bool Find(const K& key) {
             Node* cur = _root;
            while (cur) {
             if (cur -> _key < key) {
                cur = cur -> _right;
             }   
             else if (cur -> _key > key) {
                cur = cur -> _left;
             }
             else {
                return true;
             }
            } 
            return false;
        }

📌 二叉搜索树的插入

插入的具体过程如下:

a. 树为空,则直接新增节点,赋值给root指针

b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

bool Insert(const K& key) {
            if (_root == nullptr) { // 如果是空,那么我们就创建一个节点
                _root = new Node(key);
                return true;  
            } else { // 如果不是空,那我们就要找到插入的位置
                Node* parent = nullptr; // 为了在找到要插入的位置之后,将待插入的节点与整个二叉树链接起来,所以我们要设置一个父节点
                Node* cur = _root;
                while (cur) { // 循环的终止条件是:当插入到空的时候就截止了
                    parent = cur; // 每次 cur 的值更新之前也不要忘了更新 parent 的值。
                    if (cur -> _key < key) { // 如果插入的值大于该节点的值我们要往右走。
                        cur = cur -> _right;
                    } 
                    else if (cur -> _key > key) { // 如果插入的值小于该节点的值我们就往左走
                        cur = cur -> _left;
                    }
                    else {
                        return false; // 默认情况下搜索二叉树是不允许有值相等的
                    }
                }
                cur = new Node(key); // 创建一个节点出来
                if (parent -> _key < key) {
                    parent -> _right = cur; // 我们要区分一下,把这个新的节点链接到左边还是右边?
                } else {
                    parent -> _left = cur;
                }
                return true;
            }
        } 

📌 二叉搜索树的删除----- 替换法

✏️ 解法思路

在这里插入图片描述

我们要删除节点,我们可以想想可以怎样来做,比如我们要删除13 我们首先可以直接就删掉了,但是,如果我们要删除14 呢?我们也能直接删除,把14 的孩子节点给10 就行了,类似一种托孤的感觉。
难的是如果我们要删除有2个孩子的节点,比如,我们要删除节点6 ,那该怎莫办?这是二叉树,只能有两个孩子,节点6 被删除了,只能有一个节点去替代它的位置,并且也要满足我们这个搜索二叉树的性质(小的在左边,大的数在右边),那找谁去替代节点6 的位置呢?我们细细观察一下,我们知道这个搜索二叉树的性质:左子数比根小,右子树比根大,我们把节点6删了,我们就可以找节点6 的左子数的最大的那个数来顶替6, 在这里就是节点4, 我们发现按照这样的逻辑刚好满足我们的要求。同样,我们也可以找右子树的最小的那个节点,这里是节点7 ,也符合我们的要求。

✏️ 二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:

a. 要删除的结点无孩子结点

b. 要删除的结点只有左孩子结点

c. 要删除的结点只有右孩子结点

d. 要删除的结点有左、右孩子结点

看起来有待删除节点有4中情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程
如下:
情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点–直接删除
情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点–直接删除
情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点
中,再来处理该结点的删除问题–替换法删除

代码实现:

    // 删除节点—— 替换法
    bool Erase(const K &key)
    {
        Node *parent = nullptr;
        Node *cur = _root;
        while (cur)
        {
            if (cur->_key < key)
            { // 要删除的值比当前节点的值要大,说明我们要往这个节点的右子树去找
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_key > key) // 要删除的值比当前节点的值要小,所以我们要往左子树去找
            {
                parent = cur;
                cur = cur->_left;
            }
            else // 相等的话我们就找到了,就可以进行删除的操作了
            {
                /*****************************************左孩子是空的情况******************************/
                if (cur->_left == nullptr) // 如果 cur 只有一个孩子,它的左孩子是空
                {
                    if (cur == _root) // 不要忘了考虑 cur 是根节点的情况
                    {
                        _root = cur->_right; // 因为大前提是左孩子是空,所以你不可能把左孩子用来当成根节点吧
                    }
                    if (cur == parent->_left) // 恰好,cur 又是父节点的左孩子
                    {
                        parent->_left = cur->_right; // 满足搜索二叉树的性质:左边的数要小,右边的数要大)
                    }
                    else if (cur == parent->_right)
                    {
                        parent->_right = cur->_right;
                    }
                }
                /**************************************右孩子是空的情况*************************** */
                else if (cur->_right == nullptr) // 如果 cur 这个节点的右孩子是空的
                {
                    if (cur == _root)
                    {
                        _root = cur->_left;
                    }
                    if (cur == parent->_left) // 恰好,cur 又是父节点的左孩子
                    {
                        parent->_left = cur->_left; // 满足搜索二叉树的性质:左边的数要小,右边的数要大)
                    }
                    else if (cur == parent->_right)
                    {
                        parent->_right = cur->_left;
                    }
                }
                /**********************************左右孩子都不是空的情况************************ */
                else if (cur->_left != nullptr && cur->_right != nullptr)
                {
                    // 这个时候,我们就要用替换法了,左树的最大节点,右树的最小节点都可以
                    // 那我们这里默认找右树的最小节点来替代
                    Node *subLeft = cur->_right; // subLeft 表示的是右树的最小节点,通过观察我们可以知道右树的最小节点在最左边,同理,左树的最大结点在最右边,所以我们这里找右树的最小的节点取名为:subLeft
                    Node *parent = cur;
                    while (subLeft->_left) // 如果 subLeft->left 不是空,说明它还不是最小的那个节点,我们呢就要继续往左找
                    {
                        parent = subLeft;
                        subLeft = subLeft->_left;
                    }
                    // 通过上面的代码, subLeft 已经到了右子树最小节点的那个位置了,现在我们可以开始替换操作了
                    swap(cur->_key, subLeft->_key); // subLeft 是我们要找的那个值,我把它用来替换要删除的值 cur
                                                    // subLeft现在成为了我们要删除的那个节点,因为我们上面进行了替换的操作,现在我们要把 subLeft的孩子节点处理好,让他们连接上新的父节点
                    if (subLeft == parent->_left)   // 如果 subLeft 是parent的左子树,那么它的孩子的值都是小于parent的
                    {
                        parent->_left = subLeft->_right; // 自己画图会好理解一点
                    }
                    else // 如果 subLeft 是一个右子树,那么我们知道它的孩子的值都是大于parent的
                    {
                        parent->_right = subLeft->_right;
                    }
                }
                return true;
            }
        }
        return false; // 找不到就返回错
    }

🏷️ 以递归的方式来完成二叉搜索树中的一些函数

📌 递归的查找函数的方法

// 递归的查找函数的方法
    bool _FindR(Node *root, const K &key)
    {
        if (root == nullptr)
        {
            return false;
        }
        else
        {
            if (root->_key == key)
            {
                return true;
            }
            else if (root->_key > key)
            {
                return _FindR(_root->_left, key);
            }
            else if (root->_key < key)
            {
                return _FindR(_root->_right);
            }
        }
    }

📌 递归的插入函数的写法

// 递归的插入函数的写法:
    bool _InsertR(Node *&root, const K &key) // 这里的处理相当的巧妙,我指的是:Node *&root,
    {                                        // 你会感到疑问,为什么我们这里要加个 &,我来告诉你加 & 目的
                                             // 加了 & 之后,就直接把我们要插入的节点链接到树上了,我们不是要插入一个新的节点吗
                                             // 为了插入这个新的节点我们的思路是: 1. 找到节点要插入的位置 2. 将节点插入进去(要和它的父节点链接起来)
                                             // 这里使用了 & (即:引用,取别名), 在它找节点的过程中,它对应的父节点通过&的方式有了一个新的名字:root
                                             // 然后在递归遍历的时候,我们是这样的:root->left,root->right,如果 root 恰好是空,我们就 new 一个新得结点
        if (root == nullptr)                 // 这样刚好就链接上了,自己动手画递归展开图更易理解

        {
            root = new Node(key);
            return true;
        }
        if (root->_key < key)
        {
            return _InsertR(root->_right, key);
        }
        else if (root->_key > key)
        {
            return _InsertR(root->_left, key);
        }
        else
        {
            return false;
        }
    }

📌 递归的删除函数的写法 Erase

// 递归的删除函数的写法 Erase
    bool _EraseR(Node *&root, const K &key)
    {
        if (root == nullptr)
        {
            return false;
        }
        else if (root->_key > key)
        {
            return _EraseR(root->_left, key);
        }
        else if (root->_key < key)
        {
            return _EraseR(root->_right, key);
        }
        else if (root->_key == key)
        {
            // 这里就要进行删除操作了,同时我们要注意有很多种情况需要我们去解决
            /*****************        左孩子为空的情况        ****************************** */
            if (root->_left == nullptr)
            {
                Node *del = root;
                root = root->_right;
                delete del;
                return true;
            }
            /********************      右孩子为空        ***************************88 */
            else if (root->_right == nullptr)
            {

                Node *del = root;
                root = root->_left;
                delete del;
                return true;
            }
            /********************      左右孩子都不为空       ************************* */
            else
            {
                // 这里用替代法;
                Node *subLeft = root->_right; // 同上,subLeft 是我们要去寻找的替代者,为什么要让它指向 root->right? 因为我们之前说过,替代者是左子树的最大结点或者是右子树的最小结点都行,所以我们这里找的是右子树的最小结点
                while (subLeft->_left)        // 只要它还有左子树,就说明还不是最小的那个结点,所以我们要继续找
                {
                    subLeft = subLeft->_left;
                }
                swap(root->_key, subLeft->_key);   // 交换要删除的节点和替代者
                return _EraseR(root->_right, key); // 用递归的方式来删除,我们去子树中删除。
            }
        }
    }

🏷️ 所有代码:

template <class K>
// 定义二叉搜索树的节点
struct BSTreeNode
{
    BSTreeNode<K> *_left;
    BSTreeNode<K> *_right;
    K _key;

    BSTreeNode(const K &key) : _left(nullptr), _right(nullptr), _key(key) {}
};

[!NOTE] 对以上代码的解释

在C++模板编程中,使用 BSTreeNode *_left; 而不是 BSTreeNode *_left; 的主要原因是确保 BSTreeNode 类型的指针能够正确地指向与当前实例具有相同模板参数 K 的节点。

解释

  1. 模板实例化:
    当你定义了一个模板类 BSTreeNode,你实际上是在定义一个可以针对任何类型 K 生成特定版本的类的框架。每当你使用这个模板并指定一个具体的类型(如 int、float 或 std::string)作为 K 的值时,编译器都会为你生成一个具体的类版本。
  2. 类型安全:
    在模板类中,如果你使用 BSTreeNode *_left;(没有指定 K),编译器将不知道这个指针应该指向哪种具体类型的 BSTreeNode。因为 BSTreeNode 是一个模板,它本身不是一个具体的类型,直到你指定了模板参数 K。因此,直接使用 BSTreeNode 会导致类型不明确,从而引发编译错误。
  3. 正确的类型引用:
    通过使用 BSTreeNode *_left;,你明确告诉编译器 _left 是一个指向具有相同模板参数 K 的 BSTreeNode 类型的指针。这保证了类型安全,因为你不能错误地将一个具有不同 K 类型的 BSTreeNode 指针赋值给 _left。

📌 全部代码:



#include <iostream>
using namespace std;

template <class K>
// 定义二叉搜索树的节点
struct BSTreeNode
{
    BSTreeNode<K> *_left;
    BSTreeNode<K> *_right;
    K _key;

    BSTreeNode(const K &key) : _left(nullptr), _right(nullptr), _key(key) {}
};

template <class K>
class BSTree
{
    typedef BSTreeNode<K> Node;

public:
    bool Insert(const K &key)
    {
        if (_root == nullptr)
        { // 如果是空,那么我们就创建一个节点
            _root = new Node(key);
            return true;
        }
        else
        {                           // 如果不是空,那我们就要找到插入的位置
            Node *parent = nullptr; // 为了在找到要插入的位置之后,将待插入的节点与整个二叉树链接起来,所以我们要设置一个父节点
            Node *cur = _root;
            while (cur)
            {                 // 循环的终止条件是:当插入到空的时候就截止了
                parent = cur; // 每次 cur 的值更新之前也不要忘了更新 parent 的值。
                if (cur->_key < key)
                { // 如果插入的值大于该节点的值我们要往右走。
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                { // 如果插入的值小于该节点的值我们就往左走
                    cur = cur->_left;
                }
                else
                {
                    return false; // 默认情况下搜索二叉树是不允许有值相等的
                }
            }
            cur = new Node(key); // 创建一个节点出来
            if (parent->_key < key)
            {
                parent->_right = cur; // 我们要区分一下,把这个新的节点链接到左边还是右边?
            }
            else
            {
                parent->_left = cur;
            }
            return true;
        }
    }

    // 查找
    bool Find(const K &key)
    {
        Node *cur = _root;
        while (cur)
        {
            if (cur->_key < key)
            {
                cur = cur->_right;
            }
            else if (cur->_key > key)
            {
                cur = cur->_left;
            }
            else
            {
                return true;
            }
        }
        return false;
    }

    // 删除节点—— 替换法
    bool Erase(const K &key)
    {
        Node *parent = nullptr;
        Node *cur = _root;
        while (cur)
        {
            if (cur->_key < key)
            { // 要删除的值比当前节点的值要大,说明我们要往这个节点的右子树去找
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_key > key) // 要删除的值比当前节点的值要小,所以我们要往左子树去找
            {
                parent = cur;
                cur = cur->_left;
            }
            else // 相等的话我们就找到了,就可以进行删除的操作了
            {
                /*****************************************左孩子是空的情况******************************/
                if (cur->_left == nullptr) // 如果 cur 只有一个孩子,它的左孩子是空
                {
                    if (cur == _root) // 不要忘了考虑 cur 是根节点的情况
                    {
                        _root = cur->_right; // 因为大前提是左孩子是空,所以你不可能把左孩子用来当成根节点吧
                    }
                    if (cur == parent->_left) // 恰好,cur 又是父节点的左孩子
                    {
                        parent->_left = cur->_right; // 满足搜索二叉树的性质:左边的数要小,右边的数要大)
                    }
                    else if (cur == parent->_right)
                    {
                        parent->_right = cur->_right;
                    }
                }
                /**************************************右孩子是空的情况*************************** */
                else if (cur->_right == nullptr) // 如果 cur 这个节点的右孩子是空的
                {
                    if (cur == _root)
                    {
                        _root = cur->_left;
                    }
                    if (cur == parent->_left) // 恰好,cur 又是父节点的左孩子
                    {
                        parent->_left = cur->_left; // 满足搜索二叉树的性质:左边的数要小,右边的数要大)
                    }
                    else if (cur == parent->_right)
                    {
                        parent->_right = cur->_left;
                    }
                }
                /**********************************左右孩子都不是空的情况************************ */
                else if (cur->_left != nullptr && cur->_right != nullptr)
                {
                    // 这个时候,我们就要用替换法了,左树的最大节点,右树的最小节点都可以
                    // 那我们这里默认找右树的最小节点来替代
                    Node *subLeft = cur->_right; // subLeft 表示的是右树的最小节点,通过观察我们可以知道右树的最小节点在最左边,同理,左树的最大结点在最右边,所以我们这里找右树的最小的节点取名为:subLeft
                    Node *parent = cur;
                    while (subLeft->_left) // 如果 subLeft->left 不是空,说明它还不是最小的那个节点,我们呢就要继续往左找
                    {
                        parent = subLeft;
                        subLeft = subLeft->_left;
                    }
                    // 通过上面的代码, subLeft 已经到了右子树最小节点的那个位置了,现在我们可以开始替换操作了
                    swap(cur->_key, subLeft->_key); // subLeft 是我们要找的那个值,我把它用来替换要删除的值 cur
                                                    // subLeft现在成为了我们要删除的那个节点,因为我们上面进行了替换的操作,现在我们要把 subLeft的孩子节点处理好,让他们连接上新的父节点
                    if (subLeft == parent->_left)   // 如果 subLeft 是parent的左子树,那么它的孩子的值都是小于parent的
                    {
                        parent->_left = subLeft->_right; // 自己画图会好理解一点
                    }
                    else // 如果 subLeft 是一个右子树,那么我们知道它的孩子的值都是大于parent的
                    {
                        parent->_right = subLeft->_right;
                    }
                }
                return true;
            }
        }
        return false; // 找不到就返回错
    }

    // 中序遍历
    void _InOrder(Node *root)
    {
        if (root == nullptr)
        {
            return;
        }
        else
        {
            _InOrder(root->_left);
            cout << root->_key << " ";
            _InOrder(root->_right);
        }
    }

    // 但是我们这个中序遍历是成员函数,它的参数 root 也是成员变量,我们在类外面无法访问这个成员变量,那怎么办呢?
    // 我可以写个:getRoot() 的 成员函数来返回一个 root, 但是下面的处理办法也同样巧妙
    void InOrder()
    {
        _InOrder(_root);
        cout << endl;
    }

    bool EraseR(const K &key)
    {
        return _EraseR(_root, key);
    }
    bool FindR(const K &key)
    {
        return _FindR(_root, key);
    }

    bool InsertR(const K &key)
    {
        return _InsertR(_root, key);
    }

private:
    // 递归的删除函数的写法 Erase
    bool _EraseR(Node *&root, const K &key)
    {
        if (root == nullptr)
        {
            return false;
        }
        else if (root->_key > key)
        {
            return _EraseR(root->_left, key);
        }
        else if (root->_key < key)
        {
            return _EraseR(root->_right, key);
        }
        else if (root->_key == key)
        {
            // 这里就要进行删除操作了,同时我们要注意有很多种情况需要我们去解决
            /*****************        左孩子为空的情况        ****************************** */
            if (root->_left == nullptr)
            {
                Node *del = root;
                root = root->_right;
                delete del;
                return true;
            }
            /********************      右孩子为空        ***************************88 */
            else if (root->_right == nullptr)
            {

                Node *del = root;
                root = root->_left;
                delete del;
                return true;
            }
            /********************      左右孩子都不为空       ************************* */
            else
            {
                // 这里用替代法;
                Node *subLeft = root->_right; // 同上,subLeft 是我们要去寻找的替代者,为什么要让它指向 root->right? 因为我们之前说过,替代者是左子树的最大结点或者是右子树的最小结点都行,所以我们这里找的是右子树的最小结点
                while (subLeft->_left)        // 只要它还有左子树,就说明还不是最小的那个结点,所以我们要继续找
                {
                    subLeft = subLeft->_left;
                }
                swap(root->_key, subLeft->_key);   // 交换要删除的节点和替代者
                return _EraseR(root->_right, key); // 用递归的方式来删除,我们去子树中删除。
            }
        }
    }
    // 递归的插入函数的写法:
    bool _InsertR(Node *&root, const K &key) // 这里的处理相当的巧妙,我指的是:Node *&root,
    {                                        // 你会感到疑问,为什么我们这里要加个 &,我来告诉你加 & 目的
                                             // 加了 & 之后,就直接把我们要插入的节点链接到树上了,我们不是要插入一个新的节点吗
                                             // 为了插入这个新的节点我们的思路是: 1. 找到节点要插入的位置 2. 将节点插入进去(要和它的父节点链接起来)
                                             // 这里使用了 & (即:引用,取别名), 在它找节点的过程中,它对应的父节点通过&的方式有了一个新的名字:root
                                             // 然后在递归遍历的时候,我们是这样的:root->left,root->right,如果 root 恰好是空,我们就 new 一个新的结点
        if (root == nullptr)                 // 这样刚好就链接上了,自己动手画递归展开图更易理解

        {
            root = new Node(key);
            return true;
        }
        if (root->_key < key)
        {
            return _InsertR(root->_right, key);
        }
        else if (root->_key > key)
        {
            return _InsertR(root->_left, key);
        }
        else
        {
            return false;
        }
    }
    // 递归的查找函数的方法
    bool _FindR(Node *root, const K &key)
    {
        if (root == nullptr)
        {
            return false;
        }
        else
        {
            if (root->_key == key)
            {
                return true;
            }
            else if (root->_key > key)
            {
                return _FindR(_root->_left, key);
            }
            else if (root->_key < key)
            {
                return _FindR(_root->_right);
            }
        }
    }
    // 中序遍历
    // void _InOrder(Node *root)
    //{
    // if (root == nullptr)
    //{
    // return;
    //}
    // else
    //{
    //_InOrder(root->_left);
    // cout << root->_key << " ";
    //_InOrder(root->_right);
    //}
    //}

private:
    Node *_root = nullptr;
};

int main()
{
    int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};
    BSTree<int> bt; // 定义一个二叉搜索树
    for (auto e : a)
    {
        bt.InsertR(e); // 使用插入操作
    }
    bt.InOrder();
    bt.EraseR(14);
    bt.InOrder();

    bt.EraseR(8);
    bt.InOrder();

    bt.EraseR(3);
    bt.InOrder();

    for (auto e : a)
    {

        bt.EraseR(e);
        bt.InOrder();
    }
    return 0;
}


🏷️ 本章图集

  • 28
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值