决策树原理及实战代码

本文深入探讨了决策树的原理,包括信息增益、增益率和基尼系数等划分选择方法,以及预剪枝和后剪枝策略。此外,还讨论了多变量决策树的优势和决策树在处理混合型特征数据集上的适用性,同时指出了其过拟合问题和需要集成方法改善的缺点。
摘要由CSDN通过智能技术生成

目录

1 定义

2 基本流程

3 划分选择 

3.1 信息增益(ID3)

​3.2 增益率(C4.5)

3.3 基尼系数(CART)

4 剪枝处理

4.1 预剪枝

4.2 后剪枝

5 多变量决策树

6 决策树优缺点

6.1 优点

6.2 缺点

7 代码实践


1 定义

    决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3、C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。

     举个例子,我们要对“这是好瓜吗”这个问题进行决策时,通常会进行一系列子决策:通过色泽、根蒂、敲声等方式进行判断,最终得出结论是否为好瓜,这个过程即可以看作一个决策树运行的过程。

 

2 基本流程

    决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。

    一个决策树包含了一个根节点,若干个内部节点和若干个叶节点。用决策树分类时,从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。

    下图为决策树示意图,圆点——内部节点,方框——叶节点。

è¿éåå¾çæè¿°

此图采用博客https://blog.csdn.net/jiaoyangwm/article/details/79525237中的图

      决策树学习的目的是为了产生一棵泛化能力强,即处理未见实例能力强的决策树,其基本流程遵循简单且直观的“分而治之”的思想 。决策树算法的伪码如下图所示。

3 划分选择 

    在选择每一步的特征值时,如何对特征选择的先后进行判断呢?以判断西瓜好坏为例子,图4-1中以“色泽-根蒂-敲声”的顺序进行判断,那可不可以以“敲声-色泽-根蒂”的顺序进行判断呢?这里提供三种划分选择的方式。

3.1 信息增益(ID3)

    这里引入熵的概念。“信息熵”是度量样本集合纯度的最常用的一种指标。假定当前样本集合D中第k类样本所占比例为pk,则样本集合D的信息熵定义为:

    Ent(D)的值越小,D的纯度越高。

<
  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值