一、课题来源
本课题来自指导老师自拟。
- 课题研究的目的、意义
目的:设计和实现一个基于大模型的AI体检报告健康问诊系统,提升体检报告准确度,应用大模型AI技术,提高体检报告的准确性和全面性,为用户提供更可靠的健康评估。实现个性化健康问诊,利用大模型AI对个人健康数据进行分析,为不同用户提供个性化的健康咨询和建议,满足用户个性化的健康管理需求。探索AI在医疗领域的应用,通过开发此系统,探索和推动AI技术在医疗健康领域的应用,促进医疗健康信息化进程。
意义:促进健康管理,通过AI体检报告健康问诊系统,用户可以更方便地了解自己的健康状况,及时采取相应的健康管理措施,促进个人健康管理水平的提升。提高医疗效率,该系统能够辅助医生对患者进行更全面、精准的健康评估,从而提高就诊效率,减少医疗资源的浪费。推动AI与医疗健康结合,本课题将推动AI技术在医疗健康领域的应用,为医疗健康行业带来创新,促进行业数字化、智能化发展。
- 课题的国内外研究现状和发展动态
(一)国内研究现状
在国内,针对基于大模型的AI体检报告健康问诊系统的设计与实现,已经出现了一些相关研究成果。国内学者和科研团队主要集中医疗大数据分析医疗大数据分析,人工智能辅助诊断,健康管理平台。
(1)医疗大数据分析:国内研究者通过大数据分析技术,对医疗领域的数据进行挖掘和分析,以实现对患者健康状况的精准评估。
(2)人工智能辅助诊断:部分研究致力于开发基于深度学习等人工智能技术的医疗影像诊断系统,用于辅助医生进行疾病诊断和预测。
(3)健康管理平台:一些研究团队构建了健康管理平台,结合互联网和移动终端技术,为用户提供个性化的健康管理服务。
(二)国外研究现状
在国外,基于大模型的AI体检报告健康问诊系统的研究也备受关注,主要体现在医疗信息智能化应,基因组学与个性化医疗,远程医疗服务。
(1)医疗信息智能化应用:国外研究者积极探索将人工智能技术应用于医疗信息处理,包括疾病风险评估、治疗方案推荐等方面。
(2)基因组学与个性化医疗:一些研究着眼于基因组学领域,利用AI技术实现个性化医疗,为个体提供定制化的健康管理方案。
(3)远程医疗服务:国外研究者借助大数据和人工智能技术,推动远程医疗服务的发展,促进医疗资源的合理利用和分配。
(三)发展动态
随着人工智能技术的不断发展和医疗健康需求的增加,基于大模型的AI体检报告健康问诊系统的研究和发展呈现多学科融合,创新技术应用,政策支持。
(1)多学科融合:越来越多的跨学科团队参与到该领域的研究中,包括计算机科学、医学、生物信息学等领域的专家共同合作,推动AI技术在医疗健康领域的应用。
(2)创新技术应用:新兴技术的涌现,如自然语言处理、知识图谱等,为AI体检报告健康问诊系统的设计与实现提供了更多可能性。
(3)政策支持:各国政府纷纷出台相关政策,支持和鼓励医疗健康领域与人工智能技术的深度融合,推动相关研究向前发展。
四、课题的研究内容、拟采取的技术方案或研究方法
(一)研究内容:
(1)获取数据:获取用户的体检报告样例
(2)ocr识别:通过ocr识别接口提取用户体检报告中不合格的数据
(3)文心一言分析:调用文心一言接口,提取报告中的识别数据去分析健康状况
(4)个性化健康评估:结合用户的个人健康数据和生活习惯,实现对用户健康状况的个性化评估和预测。根据不同用户的特点和需求,为其提供针对性的健康管理建议,满足用户个性化的健康管理需求。
(5)可视化展示:设计直观、易懂的可视化界面,向用户展示健康评估结果和相关建议,帮助用户更好地理解自身健康状况,促进健康意识的提升。
(二)研究方法
数据搜集与整合:收集大量的医疗健康数据,包括体检报告、临床数据、生活习惯等信息,并进行数据整合和清洗,构建完整的医疗健康数据集。
(1)个性化健康评估算法:开发个性化健康评估算法,结合用户的个人健康数据和生活习惯,实现对用户健康状况的个性化评估和预测。这些算法将充分考虑个体差异,为不同用户提供个性化的健康管理建议。
(2)智能问诊系统设计:利用自然语言处理技术,构建智能问诊系统,能够理解用户提出的健康问题并给予相应的回答和建议。同时,结合知识图谱等技术,为用户提供更加准确、全面的健康咨询服务。
(3)系统集成与优化:将以上各项技术和算法进行集成,构建完整的AI体检报告健康问诊系统,并进行系统整体优化,以确保系统的稳定性和高效性。
(4)实验评估:在真实医疗环境或模拟环境中,开展系统的实际应用和评估实验,验证系统的准确性、可靠性和实用性,不断优化和改进系统性能。
五 课题研究的重点、难点及创新点
(一)重点
(1)个性化健康评估算法:开发针对个体的健康评估算法,结合用户个人数据和生活习惯,为不同用户提供个性化的健康管理建议。
(2)智能问诊系统设计:构建能够理解用户健康问题并给出准确回答和建议的智能问诊系统,提供个性化的健康咨询服务。
(二)难点
(1)数据整合与清洗:医疗健康数据的多样性和复杂性使得数据整合和清洗成为挑战,需要有效处理不同格式和质量的数据。
(2)个性化建议生成:设计能够根据用户健康数据和生活习惯生成个性化建议的算法,考虑到每个人的健康状况和需求各异。
(3)智能问诊系统:实现自然语言处理技术与知识图谱相结合,从海量数据中快速获取并应用相关知识,以满足用户的个性化健康咨询需求。
(三)创新点
(1)个性化健康评估:通过结合用户的个人健康数据和生活习惯,实现对用户健康状况的个性化评估和预测,为用户提供个性化的健康管理建议。
(2)智能问诊系统:借助自然语言处理和知识图谱等技术,构建智能问诊系统,能够理解用户提出的健康问题并给予相应的回答和建议,提升健康咨询服务的效率和智能化水平。
六、课题研究的进度安排
第一周-第二周:选题
第三周-第四周:实施研究、收集资料
第五周-第六周:开题报告
第七周-第八周:写论文、完成初稿
第九周-第十周:完成修改、定稿
第十一周-第十二周:学术不端检测
- 课题研究目标或预期成果
设计并实现一个基于大模型的AI体检报告健康问诊系统,旨在提升体检报告的准确度和全面性,实现对个人健康数据的个性化分析与管理,推动AI技术在医疗健康领域的应用,为用户提供准确、可靠的健康评估和个性化健康管理服务。
八、主要参考文献
[1]肖敏.基于大数据的问诊推荐系统的研究与实现[D].西北大学,2018.
[2]黄哲.盘点AI大模型[N].中国计算机报,2023-12-25(010).
[3]李洋.大模型为“AI+医疗”带来新机遇[N].中国高新技术产业导报,2023-11-13(003).
[4]宋婧.建好AI生态,大模型产业才能更好发展[N].中国电子报,2023-11-10(005).
[5]唐唯珂.人工智能大模型广泛应用“AI+医疗”进程能否加速突破?[N].21世纪经济报道,2023-09-20(012).
[6]董正浩.AI大模型在智慧城市领域的应用与前景[J].通信世界,2023,(17):39-40.
[7]李瑛玮,翟洁,袁学等.基于机器阅读理解模型的护士AI问答系统[J].中国新通信,2021,23(03):230-232.
[8]贾浩鑫,赵锐,项涛.基于AI算法模型的汽车工厂智能应用系统[C]//中国汽车工程学会(China Society of Automotive Engineers).2023中国汽车工程学会年会论文集(5).机械工业第九设计研究院股份有限公司;,2023:3-12.