从零开始——打造一个医疗疾病辅助诊断大模型

医疗疾病辅助诊断大模型

项目背景

随着人工智能技术的飞速发展,AI在医疗领域的应用正变得日益广泛和深入。特别是在医疗诊断领域,AI技术以其强大的数据处理能力和模式识别能力,展现出巨大的潜力。

AI医疗诊断辅助大模型的研究背景,正是基于这样的技术进步和医疗需求的双重驱动。在当前医疗资源分布不均、诊断效率亟待提升的背景下,AI医疗诊断辅助大模型能够通过学习大量的医疗数据,辅助医生进行更快速、更准确的诊断,从而提高医疗服务的质量和效率。此外,随着个性化医疗的兴起,AI模型能够根据患者的具体情况提供定制化的诊断建议,为患者带来更加精准的治疗方案。因此,开发AI医疗诊断辅助大模型,不仅是技术发展的必然趋势,也是提升医疗服务水平的重要途径。

应用场景

远程医疗咨询与诊断

为解决看病远、不方便的问题,通过远程医疗平台与AI医生进行实时互动为患者带来便利。患者可以描述自己的症状、病史和生活习惯,AI医生结合医疗数据库和诊断算法,为用户提供初步的诊断建议和健康指导。这种远程看病的方式不仅提高了医疗服务的可及性,还减轻了医院的压力,使患者在家中就能获得专业的医疗意见。

个性化健康顾问

       与传统医疗问诊平台相比,医疗诊断大模型可以作为个性化健康顾问,根据用户的健康数据和生活习惯,提供定制化的健康建议和疾病预防方案。用户可以与AI进行对话,询问关于饮食、运动、心理健康等方面的问题,AI则根据用户的具体情况提供个性化的指导。这种服务不仅帮助用户更好地管理自己的健康,还能在早期发现潜在的健康风险,提前进行干预。

情感支持与心理辅导

       让AI具有“人情味”是本项目的核心追求。AI医疗诊断大模型可以通过对话和情感分析技术,为患者提供情感支持和心理辅导。患者可以向AI倾诉自己的担忧和恐惧,AI则根据患者的情绪变化,提供安慰和鼓励,帮助患者缓解焦虑和压力。这种情感价值的提供,不仅有助于改善患者的心理健康,还能促进患者与医生之间的信任关系,提高治疗的依从性。

技术方案

(1)数据集构建及预处理

       本项目所使用的数据集来源于魔塔平台(https://modelscope.cn/)的中文医疗对话数据ChatMed_Consult_Dataset,具体可以参考下图1获取本方案的数据集来源:

图1 本项目数据集来源

本数据集为一个JSON类型的文件,该数据集的详细展示部分如图2所示,共包含了549326个来源于真实世界问诊的医疗诊断样本,为了微调我们的模型,本项目将该数据集处理为Alpaca风格的数据,具体代码和处理结果可参考图3和图4所示:

图2 部分原始数据集展示

图3 将数据集转换为Alpaca风格的代码

图4 将数据集转换为Alpaca风格的结果

(2)模型微调训练

       本项目模型在科大讯飞Mass平台上进行,具体使用的基础模型为:Qwen_v2.5_7b_Instruct,学习率为:1e-4,epochs为:3,具体展开步骤可参考下列图所示:

图5 模型训练过程详解

       经过上述步骤就可以训练我们的模型了,观察模型训练过程的一个损失值(Loss),可以发现我们的模型训练过程中还是非常稳定的

图6 模型训练过程Loss变化

后续优化

(1)结果展示

由于本项目数据集较大,又或者平台服务器人数太多造成了冲突,本项目微调整个模型所花的时间非常久,导致现在还未训练完,后续等结果出来后再放上结果图。

(2)数据增强以及参数调整

后续本项目将围绕数据增强,提高数据集质量展开,去优化大模型语言结构,使其更有医学专家的风格,更适合人们去使用,同时更好地优化参数,以求提高质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值