论文(设计、创作)题目 | 基于Spring Boot+Vue护肤品推荐系统的设计与实现 | |||
所在学院 | 专 业 | |||
学生姓名 | 学 号 | |||
一、本课题研究意义 随着社会经济的发展和科技的进步,人们对美的追求越来越高,护肤品市场也呈现出蓬勃发展的趋势。然而,面对市场上琳琅满目的护肤品,消费者往往无从下手,不知道如何选择适合自己的产品。为了满足消费者个性化、精准化的护肤需求,护肤品推荐系统应运而生。护肤品推荐系统是一种基于大数据和人工智能技术的应用,通过对消费者肌肤状况、年龄、性别、生活习惯等多维度信息的分析,为消费者提供个性化的护肤品推荐。护肤品推荐系统能够根据消费者的肌肤状况和需求,为其提供精准的护肤品推荐,避免消费者在选购护肤品时的盲目性,提高购物体验。系统通过对消费者购买行为的分析,为企业提供精准的营销策略,提高产品销售额。护肤品推荐系统能够为消费者提供个性化的护肤品推荐,提高消费者满意度,从而提升品牌忠诚度。护肤品推荐系统的研究与应用,有助于推动护肤品行业的技术创新,促进产业链的优化升级。 | ||||
二、国内外有关本课题的研究动态 护肤品推荐系统是一种基于大数据和人工智能技术的应用,通过对消费者肌肤状况、年龄、性别、生活习惯等多维度信息的分析,为消费者提供个性化的护肤品推荐。随着消费者对个性化、精准化护肤需求的不断提升,护肤品推荐系统的研究成为了国内外学者关注的焦点。本文将从国内外研究现状的角度,对护肤品推荐系统进行综述。 在国内,护肤品推荐系统的研究主要集中在技术方面,包括数据挖掘、机器学习、深度学习等。学者们通过这些技术手段,对消费者的肌肤状况、购买行为、产品评价等信息进行分析,为消费者提供个性化的护肤品推荐。此外,国内研究者还关注护肤品推荐系统在移动端的应用,如基于Android和iOS平台的护肤品推荐系统。 护肤品推荐系统的研究不仅涉及到技术层面,还涉及到产业链的优化。国内研究者关注如何通过护肤品推荐系统,促进护肤品产业链中各环节的协同发展,提高整个产业链的效率。例如,有研究者提出基于护肤品推荐系统的供应链优化模型,通过分析消费者需求,为企业提供精准的采购、生产、销售等策略。 国外研究者还关注护肤品推荐系统在跨平台应用方面的研究,如基于Web、移动端、智能硬件等平台的护肤品推荐系统。国外研究者关注护肤品推荐系统在各类商业场景中的应用,如电商平台、实体店铺、美容院等。这些研究主要关注如何将护肤品推荐系统与现有的商业场景相结合,提高消费者的购物体验和企业的销售业绩。此外,还有一些研究者关注护肤品推荐系统在医疗美容、健康管理等领域的应用,为消费者提供专业的护肤建议。 总之,护肤品推荐系统的研究在国内外都取得了一定的进展。在技术方面,国内外研究者都关注数据挖掘、机器学习、深度学习等技术在护肤品推荐系统中的应用。在应用方面,国内外研究者都关注护肤品推荐系统在电商平台、实体店铺、美容院等场景中的应用。然而,护肤品推荐系统的研究仍存在一些不足之处,如推荐算法的优化、消费者行为的深入研究等,未来研究可以进一步探讨这些方向。 | ||||
三、本课题研究的基本内容 基于Spring Boot+Vue护肤品推荐系统管理员和用户模块的功能详细介绍: 一、管理员模块 1. 用户管理:管理员可以查看系统中的所有用户,包括用户名、注册时间、购买记录等信息。管理员还可以对用户进行编辑(如修改用户名、密码等),删除等操作。 2. 产品管理:管理员可以对护肤品产品进行添加、修改、删除等操作。添加产品时,需要填写产品名称、价格、描述、图片等信息。管理员还可以对产品的分类、库存、销售状态等进行管理。 3. 分类管理:管理员可以对护肤品分类进行添加、修改、删除等操作。分类管理有助于更好地组织和管理产品,方便用户在浏览产品时进行筛选。 4. 订单管理:管理员可以查看系统中的所有订单,包括订单号、购买用户、购买产品、数量、总价、订单状态等信息。管理员还可以对订单进行编辑(如修改订单状态、数量等),删除等操作。 5. 数据统计:管理员可以查看系统中的用户、产品、订单等数据的统计信息,如用户数量、产品销量、销售额等。这些统计信息有助于管理员对系统运行情况进行分析和优化。 二、用户模块 1. 用户注册:用户可以通过注册账号和密码,成为系统的正式用户,并登录系统。注册时需要填写用户名、密码、邮箱等信息。 2. 用户登录:用户可以通过输入账号和密码,登录系统,并使用系统的各项功能。登录后,用户可以在个人中心查看和管理个人信息、订单信息等。 3. 产品浏览:用户可以查看系统中的所有护肤品产品,包括产品名称、价格、图片、描述等信息。用户还可以对产品进行搜索(如根据产品名称、分类等条件进行筛选)、排序(如按价格、销量等排序)等操作。 4. 产品推荐:系统根据用户的肌肤状况、年龄、性别等信息,为用户推荐适合的护肤品。推荐结果会显示在用户的主页或购物车内。 5. 购物车:用户可以将心仪的产品添加到购物车,并进行查看、修改(如修改数量、删除产品等)、结算等操作。 6. 下单购买:用户可以选择购物车中的产品,进行下单购买,并填写收货地址、支付方式等详细信息。用户还可以查看订单状态、修改订单信息等。 7. 订单管理:用户可以查看自己的所有订单,包括订单号、购买产品、数量、总价、订单状态等信息。用户还可以跟踪订单的配送和状态。 8. 评价产品:用户可以对购买过的产品进行评价,分享自己的使用心得。评价信息将显示在产品详情页,供其他用户参考。 9. 个人信息管理:用户可以查看和修改自己的个人信息,包括姓名、电话、地址等。用户还可以修改密码、查看积分、优惠券等。 10. 积分管理:用户可以通过购物、评价等方式获得积分,并在系统中进行兑换(如兑换优惠券、礼品等)、查看等操作。 | ||||
四、本课题拟解决的主要问题及对解决复杂工程问题能力的要求 基于Spring Boot+Vue护肤品推荐系统拟解决的主要问题如下: 1. 用户个性化需求:系统根据用户的肌肤状况、年龄、性别等信息,为用户推荐适合的护肤品,满足用户个性化需求。 2. 信息过载:护肤品市场中产品种类繁多,用户在挑选护肤品时容易感到迷茫。通过推荐系统,可以帮助用户快速找到适合自己的产品,降低信息过载带来的困扰。 3. 购物决策困难:用户在购买护肤品时,往往需要对比多个产品,权衡价格、功效等因素。推荐系统能够根据用户需求,为用户推荐合适的产品,简化购物决策过程。 要解决这些复杂工程问题,开发人员需要具备以下能力: 1. 精通Spring Boot和Vue技术:开发人员需要熟练掌握Spring Boot和Vue技术,能够快速搭建系统架构,实现前后端分离的开发模式。 2. 数据分析与挖掘:开发人员需要具备数据分析和挖掘能力,能够从海量数据中提取有价值的信息,为推荐系统提供精准的推荐依据。 3. 机器学习算法:开发人员需要了解机器学习算法,能够运用合适的算法实现护肤品推荐功能,如协同过滤、矩阵分解等。 4. 系统优化与性能调优:开发人员需要具备系统优化和性能调优能力,能够针对系统瓶颈进行优化,提高系统运行效率。 | ||||
五、研究方法 本课题主要采用以下研究方法: (1)文献研究法 充分运用图书馆及知网,万方,维普谷歌等知识平台,查找相关期刊和论文,了解已有研究思路和方法。为本文深入探究改进原有系统功能性不足,提供一定的理论基础。 (2)案例研究法 本系统将专门针对先已存在的程序进行分析,结合案例对本系统进行比较分析,并进一步人员需求进行统合分析,深入了解行业从业与需求人员对功能需求的要求,为如何有效提升程序的功能完善性提出有针对性的对策建议。 (3)比较法 通过对国内外有关系统的功能、相关技术、内容等方面进行比较分析,从而提出当前系统所存在的问题,并提出相应的解决措施。 | ||||
1. 个性化推荐:系统根据用户的肌肤状况、年龄、性别等信息,为用户推荐适合的护肤品。通过数据挖掘和机器学习技术,实现精准的个性化推荐,提高用户购物满意度。 2. 社区互动:在推荐系统中加入社区互动功能,用户可以发表评论、分享心得,形成良好的购物氛围。同时,根据社区用户的行为和数据,进一步优化推荐算法,提高推荐准确性。 | ||||
七、主要参考文献 [1] 李天琪,杨红梅,娄茜然,等.基于内容推荐的化妆品查询可视化系统设计与实现[J].信息与电脑, 2021, 33(11):3. [2] 张颖.化妆品功效评价为肌肤健康"护航"[J].中国化妆品, 2020(1):5. [3] 李天琪,杨红梅,娄茜然,等.基于内容推荐的化妆品查询可视化系统设计与实现[J]. 2021.DOI:10.3969/j.issn.1003-9767.2021.11.042. [4] 蔡洁文,鲁莎,刘馨镁,等.与痤疮相关的化妆品研究进展[J].皮肤病与性病, 2023, 45(2):96-99. [5] 魏东琦,李洪政,李优生.基于三菱PLC的化妆品自动推荐销售及包装系统[J].自动化博览, 2019, v.36;No.314(S1):91-93.DOI:CNKI:SUN:ZDBN.0.2019-S1-026. [6] Hemantha L M I T , Gayathri T M E , Silva N .Personalized Smart Skincare Product Recommendation System[J].International Journal of Computer Applications, 2022. [7] Contini S , Rombo S E .A recommendation system for the prediction of drug–target associations[J].Edge-of-Things in Personalized Healthcare Support Systems, 2022:115-136. [8] Elrazek F A A , Okby O M .Nurses Knowledge and Performance about Skin Care: Guide Lines in Neonatal Intensive Care Units By[J]. 2021. [9] Iwendi C , Ibeke E , Eggoni H ,et al.Pointer-Based Item-to-Item Collaborative Filtering Recommendation System Using a Machine Learning Model[J].International Journal of Information Technology & Decision Making, 2022, 21(01):463-484.DOI:10.1142/S0219622021500619. | ||||
具体时间及写作进度安排(表格不够可追加表格) | ||||
起止日期 | 主要工作内容 | |||
2023年12月13日-12月19日 | 完成开题工作,撰写开题报告 | |||
2023年12月20日-12月30日 | 完成开题答辩; | |||
2024年 1月1 日-4月12日 | 熟悉所用技术,完成主要设计开发工作内容 | |||
2024年 4月13日-4月21日 | 撰写中期报,中期检查 | |||
2024年 4月22日-6月7日 | 完成所有工作内容,撰写论文,答辩 ppt,毕业答辩。 | |||
指导教师对开题报告的意见 ********。是否推荐开题。 指导教师签名: 2024年 1月3日 | ||||
系(室)对本课题开题的意见 ********。是否同意开题。 负责人签名: 2024年 1月7日 |
护肤品推荐系统(需求文档)
最新推荐文章于 2025-06-02 23:27:21 发布