具体的软硬件实现点击 MCU-AI技术网页_MCU-AI人工智能
血压的测量和预测是心脏病患者和有心脏问题的人的一个重要条件,应该保持持续的控制。在这项研究中,基于从使用袖带的个体获得的振荡波形,振荡波形分为三个周期。第一个周期是从起点到收缩压(SBP),第二个周期是从收缩压(SBP)到舒张压(DBP)之间,第三个周期是从舒张压(DBP)到波形结束之间。在数据集中,收缩压点对应的拍的属性标记为1,舒张压点对应的拍的属性标记为2。其他节拍用0标记。在这项研究中,数据集首先被重新标记。收缩期搏动标记为1,收缩期到舒张期的搏动标记为2,舒张期到结束标记为3。重新标记后,350个测量值,300个测量值分为训练数据子集,50个测量值分为测试数据子集。用300个子集训练分类器,生成分类器模型。利用生成的模型对测试数据子集中的脉冲序列进行分类。在发现的标签系列中,将前1至2个标签标记为收缩压点,最后2至3个标签标记为舒张压点,并估计相应的袖带压力为收缩压和舒张压值。通过对这些时间段进行分类,收缩压(SBP)和舒张压(DBP)值使用三种分类算法进行估计,包括k近邻(kNN)、加权k近邻(WkNN)和Bagged Trees算法。为了评估预测算法的性能,使用了四种不同的性能指标,包括MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)和R2。对于使用kNN算法、加权kNN和Bagged Trees估计SBP值,得到的MAEs分别为3.590、3.520和4.499。利用kNN算法、加权kNN算法和Bagged树算法估计DBP值,得到的MAEs分别为11.077、11.032和13.069。实验结果表明,该方法可以作为一种新的方法用于血压的估计。