电商类目预测算法

在电商搜索的Query类目预测任务中,设计一个高效且准确的算法需要综合考虑层次化分类、模型架构选择和数据特性。以下是分步解决方案:


1. 问题分析与核心挑战

  • 层次化结构:三层类目(10→100→1000)需建模层级依赖关系。
  • 数据稀疏性:底层类目样本可能极度不均衡。
  • 语义歧义:Query短文本需捕捉上下文和领域知识。
  • 计算效率:第三层1000类目需高效分类策略。

2. 模型设计思路

采用层次化多任务学习结合预训练语言模型,显式建模类目层级关系,同时解决数据稀疏问题。

2.1 模型架构
  • 编码层:使用BERT或RoBERTa等预训练模型提取Query语义表示。
  • 分类层
    • 分层分类头:为每层设计独立分类器,共享编码器参数。
    • 条件预测机制:子层分类器输入父层预测结果(嵌入形式)以强化依赖。
# 伪代码示例
class HierarchicalClassifier(nn.Module):
    def __init__(self, encoder, n_classes_l1, n_classes_l2, n_classes_l3):
        super().__init__()
        self.encoder = encoder  # BERT/RoBERTa
        self.clf_l1 = nn.Linear(encoder.config.hidden_size, n_classes_l1)
        self.clf_l2 = nn.Linear(encoder.config.hidden_size + n_classes_l1, n_classes_l2)
        self.clf_l3 = nn.Linear(encoder.config.hidden_size + n_classes_l2, n_classes_l3)
    
    def forward(self, input_ids, attention_mask):
        # 编码Query
        outputs = self.encoder(input_ids, attention_mask)
        pooled_output = outputs.pooler_output
        
        # 第一层预测
        logits_l1 = self.clf_l1(pooled_output)
        prob_l1 = torch.softmax(logits_l1, dim=-1)
        
        # 第二层:拼接第一层预测概率
        feat_l2 = torch.cat([pooled_output, prob_l1], dim=-1)
        logits_l2 = self.clf_l2(feat_l2)
        
        # 第三层:拼接第二层预测概率
        feat_l3 = torch.cat([pooled_output, prob_l2], dim=-1)
        logits_l3 = self.clf_l3(feat_l3)
        
        return logits_l1, logits_l2, logits_l3
2.2 损失函数
  • 联合损失:加权求和各层交叉熵损失,高层类目权重更高。
    L=αLL1+βLL2+γLL3,α<β<γ\mathcal{L} = \alpha \mathcal{L}_{L1} + \beta \mathcal{L}_{L2} + \gamma \mathcal{L}_{L3}, \quad \alpha < \beta < \gammaL=αLL1+βLL2+γLL3,α<β<γ
  • 路径一致性约束:通过CRF或自定义损失函数惩罚不符合层级结构的预测。
2.3 数据增强与采样
  • Query增强:同义词替换、回译、随机删除/插入。
  • 层次感知采样:对低频子类目过采样,确保每批数据覆盖多样父类目。

3. 预测策略优化

  • Beam Search:保留每层Top-K候选,组合最优路径。
  • 后处理校正:利用类目层级规则修正矛盾预测(如子类目不在父类目下)。

4. 评估指标

  • 扁平指标:各层独立计算准确率/F1。
  • 层次化指标
    • Hierarchical Precision/Recall:仅当完整路径正确时计数。
    • Tree-distance Error:计算预测与真实类目的树编辑距离。

5. 工程优化

  • 模型轻量化:使用知识蒸馏(如TinyBERT)或量化降低推理延迟。
  • 缓存机制:高频Query预测结果缓存,减少重复计算。

6. 实验与迭代

  1. 基线对比:测试TextCNN、BiLSTM、BERT等编码器的效果。
  2. 消融实验:验证层次化损失、条件预测机制的有效性。
  3. 在线A/B测试:通过点击率、转化率评估业务影响。

7. 扩展方向

  • 融入用户行为:结合用户历史点击/购买数据增强特征。
  • 动态更新机制:定期增量训练适应新增类目。

通过上述设计,模型能够有效利用层级结构信息,结合预训练语言模型的强大表征能力,显著提升类目预测的准确率和鲁棒性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值