在电商搜索的Query类目预测任务中,设计一个高效且准确的算法需要综合考虑层次化分类、模型架构选择和数据特性。以下是分步解决方案:
1. 问题分析与核心挑战
- 层次化结构:三层类目(10→100→1000)需建模层级依赖关系。
- 数据稀疏性:底层类目样本可能极度不均衡。
- 语义歧义:Query短文本需捕捉上下文和领域知识。
- 计算效率:第三层1000类目需高效分类策略。
2. 模型设计思路
采用层次化多任务学习结合预训练语言模型,显式建模类目层级关系,同时解决数据稀疏问题。
2.1 模型架构
- 编码层:使用BERT或RoBERTa等预训练模型提取Query语义表示。
- 分类层:
- 分层分类头:为每层设计独立分类器,共享编码器参数。
- 条件预测机制:子层分类器输入父层预测结果(嵌入形式)以强化依赖。
# 伪代码示例
class HierarchicalClassifier(nn.Module):
def __init__(self, encoder, n_classes_l1, n_classes_l2, n_classes_l3):
super().__init__()
self.encoder = encoder # BERT/RoBERTa
self.clf_l1 = nn.Linear(encoder.config.hidden_size, n_classes_l1)
self.clf_l2 = nn.Linear(encoder.config.hidden_size + n_classes_l1, n_classes_l2)
self.clf_l3 = nn.Linear(encoder.config.hidden_size + n_classes_l2, n_classes_l3)
def forward(self, input_ids, attention_mask):
# 编码Query
outputs = self.encoder(input_ids, attention_mask)
pooled_output = outputs.pooler_output
# 第一层预测
logits_l1 = self.clf_l1(pooled_output)
prob_l1 = torch.softmax(logits_l1, dim=-1)
# 第二层:拼接第一层预测概率
feat_l2 = torch.cat([pooled_output, prob_l1], dim=-1)
logits_l2 = self.clf_l2(feat_l2)
# 第三层:拼接第二层预测概率
feat_l3 = torch.cat([pooled_output, prob_l2], dim=-1)
logits_l3 = self.clf_l3(feat_l3)
return logits_l1, logits_l2, logits_l3
2.2 损失函数
- 联合损失:加权求和各层交叉熵损失,高层类目权重更高。
L=αLL1+βLL2+γLL3,α<β<γ\mathcal{L} = \alpha \mathcal{L}_{L1} + \beta \mathcal{L}_{L2} + \gamma \mathcal{L}_{L3}, \quad \alpha < \beta < \gammaL=αLL1+βLL2+γLL3,α<β<γ - 路径一致性约束:通过CRF或自定义损失函数惩罚不符合层级结构的预测。
2.3 数据增强与采样
- Query增强:同义词替换、回译、随机删除/插入。
- 层次感知采样:对低频子类目过采样,确保每批数据覆盖多样父类目。
3. 预测策略优化
- Beam Search:保留每层Top-K候选,组合最优路径。
- 后处理校正:利用类目层级规则修正矛盾预测(如子类目不在父类目下)。
4. 评估指标
- 扁平指标:各层独立计算准确率/F1。
- 层次化指标:
- Hierarchical Precision/Recall:仅当完整路径正确时计数。
- Tree-distance Error:计算预测与真实类目的树编辑距离。
5. 工程优化
- 模型轻量化:使用知识蒸馏(如TinyBERT)或量化降低推理延迟。
- 缓存机制:高频Query预测结果缓存,减少重复计算。
6. 实验与迭代
- 基线对比:测试TextCNN、BiLSTM、BERT等编码器的效果。
- 消融实验:验证层次化损失、条件预测机制的有效性。
- 在线A/B测试:通过点击率、转化率评估业务影响。
7. 扩展方向
- 融入用户行为:结合用户历史点击/购买数据增强特征。
- 动态更新机制:定期增量训练适应新增类目。
通过上述设计,模型能够有效利用层级结构信息,结合预训练语言模型的强大表征能力,显著提升类目预测的准确率和鲁棒性。