Embedding原理和Tensorflow-tf.nn.embedding_lookup()

Embedding原理

应用中一般将物体嵌入到一个低维空间\mathbb R^n(n \ll m) ,只需要再compose上一个从\mathbb R^m\mathbb R^n的线性映射就好了。每一个n\times m 的矩阵M都定义了\mathbb R^m\mathbb R^n的一个线性映射:x \mapsto Mx。当x 是一个标准基向量的时候,Mx对应矩阵M中的一列,这就是对应id的向量表示。这个概念用神经网络图来表示如下:



从id(索引)找到对应的One-hot encoding,然后红色的weight就直接对应了输出节点的值(注意这里没有activation function),也就是对应的embedding向量。

One-hot型的矩阵相乘,可以简化为查表操作,这大大降低了运算量。

tf.nn.embedding_lookup:

tf.nn.embedding_lookup()就是根据input_ids中的id,寻找embeddings中的第id行。比如input_ids=[1,3,5],则找出embeddings中第1,3,5行,组成一个tensor返回。

embedding_lookup不是简单的查表,id对应的向量是可以训练的,训练参数个数应该是 category num*embedding size,也就是说lookup是一种全连接层。

看一段代码:

#!/usr/bin/env/python
# coding=utf-8
import tensorflow as tf
import numpy as np

# 定义一个未知变量input_ids用于存储索引
input_ids = tf.placeholder(dtype=tf.int32, shape=[None])

# 定义一个已知变量embedding,是一个5*5的对角矩阵
# embedding = tf.Variable(np.identity(5, dtype=np.int32))

# 或者随机一个矩阵
embedding = a = np.asarray([[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]])

# 根据input_ids中的id,查找embedding中对应的元素
input_embedding = tf.nn.embedding_lookup(embedding, input_ids)

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
# print(embedding.eval())
print(sess.run(input_embedding, feed_dict={input_ids: [1, 2, 3, 0, 3, 2, 1]}))


tf.nn.embedding_lookup是一个用于选取张量中索引对应元素的函数。它的用法是tf.nn.embedding_lookup(tensor, id),其中tensor是输入张量,id是要查找的索引。根据id在tensor中找到对应的元素并返回。 举个例子,假设我们有一个嵌入矩阵embedding一个输入id列表input_ids。我们可以使用tf.nn.embedding_lookup(embedding, input_ids)来找到embedding中与input_ids中的id对应的向量。如果input_ids=[1, 2, 3],则函数会返回embedding中下标为1, 2, 3的向量组成的矩阵。 需要注意的是,tf.nn.embedding_lookup不仅仅是简单地查表,查到的向量是可以训练的,也就是说它是一种全连接层,训练参数的个数是类别数乘以嵌入向量的大小。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [tf.nn.embedding_lookup()函数](https://blog.csdn.net/yql_617540298/article/details/88394120)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [tf.nn.embedding_lookup()的用法](https://blog.csdn.net/yangfengling1023/article/details/82910951)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值