数据结构与算法-动态规划

题目描述:

1.一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
2.一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
3.目前市面上的纸币主要有1元,5元,10元,20元,50元、100元六种,如果要买一件商品x元,有多少种货币组成方式?
问法不一样,但是本质一样!

解析:

这些都属于动态规划解法
第一题用Fibonacci的F(n)=F(n-1) + F(n-2) ,比较简单。
第二题、F(n)=F(n-1) + F(n-2) +…+F(n-k)=2F(n-1)。
第三题,属于完全背包问题:
状态转移方程1:
定义F[i][sum] = 用前i种硬币构成sum的所有组合数。
F [ i ] [ s u m ] = F [ i − 1 ] [ s u m − 0 ∗ V m ] + F [ i − 1 ] [ s u m − 1 ∗ V m ] + F [ i − 1 ] [ s u m − 2 ∗ V m ] + … + F [ i − 1 ] [ s u m − K ∗ V m ] F[i][sum] = F[i-1][sum - 0*V_m] + F[i-1][sum - 1*V_m] + F[i-1][sum - 2*V_m] + … + F[i-1][sum - K*V_m] F[i][sum]=F[i1][sum0Vm]+F[i1][sum1Vm]+F[i1][sum2Vm]++F[i1][sumKVm] ,其中m=i-1, k=sum/V_m。
如果我们用二位数组表示F[i][sum], 我们发现第i行的值全部依赖与i-1行的值,所以我们可以逐行求解该数组。
状态转移方程2:
和跳台阶一样,发现这种方式更简单容易理解
F[sum] = F[sum-1] + F[sum-5] + …+F[sum-100]

实现:

#include <vector>
#include <iostream>

using namespace std;

class Solution {
public:
    // 动态规划1:
    // F[i][sum] = 用前i种硬币构成sum的所有组合数。
    // 状态转移方程:
    // F[i][sum] = F[i-1][sum - 0*Vm] + F[i-1][sum - 1*Vm] + F[i-1][sum - 2*Vm] + … + F[i-1][sum - K*Vm]
    // 其中m=i-1, k=sum/Vm
    int solution1(vector<int> array, int sum) {
        int n = array.size();
        // F[i][j]表示用硬币的前i个可以凑成金额j的个数
        // 定义二维数组
        vector<vector<int> > F(n+1, vector<int>(sum+1,0));

        // 初始条件,如果sum=0,那么无论有前多少种来组合0,只有一种可能
        for(int i = 0; i <= n; i++)
        {
            F[i][0] = 1;
        }

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= sum; j++) {
                // j / coins[i-1]表示能取的该硬币的最大数量。
                for (int k = 0; k <= j / array[i-1]; k++)
                {
                    F[i][j] += F[i-1][j - k * array[i-1]];
                }
            }
        }

        return F[n][sum];
    }

    // 动态规划2:
    int solution1(vector<int> array, int sum) {
     int n = array.size();
        // F[x]表示凑成金额x的组合个数
        // 定义二维数组
        int F[sum];
        F[0]=1;
        for(int i = 0; i < n; i++){
        	for(int x = array[i]; x < sum; x++){
        		F(x) += F[x - array[i]];
        	}
        }
        return F(sum-1);
    }


    // 暴力搜索
    int solution3(vector<int> array, int sum) {
        int num = 0;
        if (sum < 1) {
            return num;
        }

        for (int i = 0; i <= sum / array[0]; i++)
            for (int j = 0; j <= sum / array[1]; j++)
                for (int k = 0; k <= sum / array[2]; k++)
                    for (int l = 0; l <= sum / array[3]; l++)
                        for (int m = 0; m <= sum / array[4]; m++)
                            for (int h = 0; h <= sum / array[5]; h++) {
                                if (sum == i + 5 * j + 10 * k + 20 * l + 50 * m + 100 * h) {
                                    num++;
                                }
                            }
        return num;
    }
};

int main() {
    vector<int> array = {1, 5, 10, 20, 50, 100};
    Solution s;
    cout << s.solution1(array, 200) << endl;
}

01背包问题

N N N件物品和一个容量为 V V V的背包,放入第 i i i件物品的费用是 C i C_i Ci,得到的价值是 W i W_i Wi。求解将哪些物品装入背包可使价值总和最大。
状态转移方程 F [ i , v ] = m a x F [ i − 1 , v ] , W i + F [ i − 1 , v − C i ] F[i,v]=max{F[i-1,v],W_i+F[i-1,v-C_i]} F[i,v]=maxF[i1,v],Wi+F[i1,vCi]
Reference:
https://www.jianshu.com/p/a66d5ce49df5

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值