开发文档:基于Python的物品协同过滤算法音乐推荐系统
项目概述
该项目是一个基于Python的音乐推荐系统,使用协同过滤算法(Collaborative Filtering)为用户推荐个性化的音乐。系统使用Django框架开发,包含爬虫抓取数据、用户管理、音乐推荐等功能。推荐算法基于用户的喜好与不喜好的音乐,通过 Surprise
库中的SVD(奇异值分解)和KNN(K最近邻)算法生成个性化推荐。
项目结构
- 前端部分:
- 使用Django提供的模板系统和静态文件展示音乐推荐结果。
- 后端部分:
- 使用Django框架,主要处理用户数据、音乐数据和推荐算法。
- 使用
Surprise
库实现协同过滤推荐算法。
- 数据库设计:
- 使用SQLite数据库存储用户数据、音乐数据和推荐历史记录。
- 推荐系统部分:
- 使用协同过滤算法为每个用户生成个性化音乐推荐。
数据库设计
1. UserProfile 模型
user
:与Django的User
模型一对一关联,表示每个用户的个人资料。likes
:与Music
模型建立多对多关系,记录用户喜欢的音乐。dislikes
:与Music
模型建立多对多关系,记录用户不喜欢的音乐。first_run
:布尔字段,标识用户是否第一次使用系统,执行冷启动策略。genre_subscribe
:存储用户订阅的音乐流派。
2. Music 模型
该模型用于存储音乐的相关信息,如:
title
:音乐标题。genre
:音乐流派。artist
:音乐艺术家。
3. 数据库操作
- 用户的喜好和不喜好的音乐通过
likes
和dislikes
字段与音乐数据进行关联。 - 推荐系统从这些数据中提取用户的行为数据,并生成个性化的推荐。
推荐算法
1. 协同过滤算法
推荐系统的核心算法是基于协同过滤的方法,具体使用了以下两种算法:
- 基于用户的协同过滤:根据用户的历史行为和相似用户的喜好来推荐音乐。
- 基于物品的协同过滤:根据用户喜好的音乐之间的相似度来推荐其他相似的音乐。
2. SVD(奇异值分解)
- 使用 SVD 算法对用户-音乐的评分矩阵进行分解,提取潜在因素,进行个性化推荐。
3. KNN(K最近邻)
- 使用 KNNBasic 算法通过计算用户或物品的相似度,为用户推荐与其喜好相似的音乐。
4. 冷启动策略
- 对于首次使用系统的用户,推荐系统根据用户订阅的流派(如
genre_subscribe
字段)进行推荐。
5. 预测生成
- 通过
build_predictions
函数为特定用户生成音乐推荐,使用评分矩阵和算法模型预测用户可能喜欢的音乐。
推荐流程
- 数据准备:
- 从
UserProfile
和Music
模型中提取用户的音乐喜好数据(如喜欢和不喜欢的音乐)。
- 协同过滤推荐:
- 使用
Surprise
库中的协同过滤算法(如SVD
或KNNBasic
),根据用户的历史行为和音乐之间的相似度生成推荐。
- 冷启动推荐:
- 对于第一次使用系统的用户,根据其订阅的流派进行推荐。
- 推荐结果输出:
- 生成的推荐结果通过Django模板系统展示给用户。
安装与运行
1. 安装依赖
使用 requirements.txt
安装项目依赖:
pip install -r requirements.txt
2. 配置数据库
运行数据库初始化命令:
python manage.py migrate
3. 启动服务器
启动Django开发服务器:
python manage.py runserver
4. 启动推荐系统
通过调用 recommend.py
中的函数为用户生成推荐:
# Example to call the recommendation function from music.recommend import build_df, build_predictions df = build_df() recommendations = build_predictions(df, user_instance)
总结
该项目通过协同过滤算法(如SVD和KNN)为用户推荐个性化的音乐,结合Django框架和 Surprise
库实现。数据库设计合理地存储了用户行为和音乐数据,推荐系统能够基于用户历史数据、相似用户以及冷启动策略提供精准的推荐结果。
【基于python+Django的物品协同过滤音乐推荐系统】 https://www.bilibili.com/video/BV1Dq4y1v7or/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4