基于Python的物品协同过滤算法音乐推荐系统

开发文档:基于Python的物品协同过滤算法音乐推荐系统

项目概述

该项目是一个基于Python的音乐推荐系统,使用协同过滤算法(Collaborative Filtering)为用户推荐个性化的音乐。系统使用Django框架开发,包含爬虫抓取数据、用户管理、音乐推荐等功能。推荐算法基于用户的喜好与不喜好的音乐,通过 Surprise 库中的SVD(奇异值分解)和KNN(K最近邻)算法生成个性化推荐。

项目结构

  1. 前端部分
  • 使用Django提供的模板系统和静态文件展示音乐推荐结果。
  1. 后端部分
  • 使用Django框架,主要处理用户数据、音乐数据和推荐算法。
  • 使用 Surprise 库实现协同过滤推荐算法。
  1. 数据库设计
  • 使用SQLite数据库存储用户数据、音乐数据和推荐历史记录。
  1. 推荐系统部分
  • 使用协同过滤算法为每个用户生成个性化音乐推荐。

数据库设计

1. UserProfile 模型
  • user:与Django的 User 模型一对一关联,表示每个用户的个人资料。
  • likes:与 Music 模型建立多对多关系,记录用户喜欢的音乐。
  • dislikes:与 Music 模型建立多对多关系,记录用户不喜欢的音乐。
  • first_run:布尔字段,标识用户是否第一次使用系统,执行冷启动策略。
  • genre_subscribe:存储用户订阅的音乐流派。
2. Music 模型

该模型用于存储音乐的相关信息,如:

  • title:音乐标题。
  • genre:音乐流派。
  • artist:音乐艺术家。
3. 数据库操作
  • 用户的喜好和不喜好的音乐通过 likesdislikes 字段与音乐数据进行关联。
  • 推荐系统从这些数据中提取用户的行为数据,并生成个性化的推荐。

推荐算法

1. 协同过滤算法

推荐系统的核心算法是基于协同过滤的方法,具体使用了以下两种算法:

  • 基于用户的协同过滤:根据用户的历史行为和相似用户的喜好来推荐音乐。
  • 基于物品的协同过滤:根据用户喜好的音乐之间的相似度来推荐其他相似的音乐。
2. SVD(奇异值分解)
  • 使用 SVD 算法对用户-音乐的评分矩阵进行分解,提取潜在因素,进行个性化推荐。
3. KNN(K最近邻)
  • 使用 KNNBasic 算法通过计算用户或物品的相似度,为用户推荐与其喜好相似的音乐。
4. 冷启动策略
  • 对于首次使用系统的用户,推荐系统根据用户订阅的流派(如 genre_subscribe 字段)进行推荐。
5. 预测生成
  • 通过 build_predictions 函数为特定用户生成音乐推荐,使用评分矩阵和算法模型预测用户可能喜欢的音乐。

推荐流程

  1. 数据准备
  • UserProfileMusic 模型中提取用户的音乐喜好数据(如喜欢和不喜欢的音乐)。
  1. 协同过滤推荐
  • 使用 Surprise 库中的协同过滤算法(如 SVDKNNBasic),根据用户的历史行为和音乐之间的相似度生成推荐。
  1. 冷启动推荐
  • 对于第一次使用系统的用户,根据其订阅的流派进行推荐。
  1. 推荐结果输出
  • 生成的推荐结果通过Django模板系统展示给用户。

安装与运行

1. 安装依赖

使用 requirements.txt 安装项目依赖:

pip install -r requirements.txt
2. 配置数据库

运行数据库初始化命令:

python manage.py migrate
3. 启动服务器

启动Django开发服务器:

python manage.py runserver
4. 启动推荐系统

通过调用 recommend.py 中的函数为用户生成推荐:

# Example to call the recommendation function
from music.recommend import build_df, build_predictions

df = build_df()
recommendations = build_predictions(df, user_instance)

总结

该项目通过协同过滤算法(如SVD和KNN)为用户推荐个性化的音乐,结合Django框架和 Surprise 库实现。数据库设计合理地存储了用户行为和音乐数据,推荐系统能够基于用户历史数据、相似用户以及冷启动策略提供精准的推荐结果。

【基于python+Django的物品协同过滤音乐推荐系统】 https://www.bilibili.com/video/BV1Dq4y1v7or/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4

源码获取:基于Python的物品协同过滤算法音乐推荐系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码空间站TH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值