基于联邦学习的入侵检测机制研究

本文探讨了联邦学习在入侵检测中的应用,通过保护数据隐私,提高了检测准确率和效率。联邦学习机制允许在不暴露数据的情况下共享模型,增强了多客户端的攻击行为日志共享。实验表明,基于联邦学习的入侵检测系统在检测准确率和效率上有显著提升,尤其是在复杂网络环境中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

大数据时代的到来使得数据成为社会发展的重要战略资源。然而随着网络环境日趋复杂化,隐私泄露和恶意攻击事件层出不穷。联邦学习作为一种新型数据共享模型,能够在保护数据隐私的前提下进行数据共享,有效解决了传统入侵检测模型的弊端。文章首先介绍了联邦学习及入侵检测模型的构成及特点,提出了基于联邦学习的入侵检测机制,并深入分析了该检测机制在检测准确率及效率上有效提升的可行性。通过对模型进行需求分析和设计,并以函数编程进行模拟仿真实验,实现原型系统开发。实验表明联邦学习机制能够在保证参与客户端数据隐私安全的前提下实现多方攻击行为日志的共享。多组控制变量的对照实验表明,基于联邦学习的入侵检测机制在检测准确率及效率上得到明显改善。

关键词: 联邦学习; 恶意攻击; 入侵检测; 网络安全

0 引言

大数据技术飞速发展,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值