随着数字化、信息化和智能化的不断推进,三维模型在各个领域的应用越来越广泛,数据更新频率也不断加快,海量而庞大的三维数据对模型存储、屏端展示和管理应用都带来了极大挑战。于是,模型轻量化技术开始在行业间被广泛提及,对模型数据进行“瘦身”的呼声与需求愈发强烈。
什么是模型轻量化?
三维模型轻量化是指对三维模型通过优化处理减少其存储空间和计算资源的占用,从而提高处理速度和系统性能的一种技术,其本质上是对模型进行压缩和简化。在实际应用中,由于三维模型包含大量的顶点、面片和纹理等数据,因此需要借助三维模型轻量化技术来降低数据量,以便更好地适应各种场景和需求。
不同精细度的模型图
三维模型轻量化包括以下方面:
一、几何简化
几何简化是一种常用的轻量化处理技术,通过减少三维模型中的顶点数量和面片数来降低数据体积。几何简化方法包括以下几种:
(1)顶点减采样:通过保留模型中的重要顶点,同时删除或合并其他冗余顶点,以降低顶点数量。常用的顶点减采样算法有基于误差度量的简化算法,例如Quadric Error Metric(QEM)和Vertex Clustering等。
(2)网格简化:通过合并和塌陷网格中的面片,减少面片数目。网格简化方法可以基于网格的曲率、法线或其他特征进行选择性简化,以保持模型的形态特征。
网格简化图
(3)移除不必要的细节:模型中可能存在一些细节,但这些细节对于渲染或使用模型并不重要。通过移除这些不必要的细节,可以大大减小模型的大小。比如移除模型内部结构、减少模型之间重叠的