模型轻量化介绍
在深度学习中,模型轻量化是一项关键技术,用于在不显著损失模型精度的前提下减少模型的计算量和存储需求。轻量化技术尤其适用于资源受限的设备(如移动设备、嵌入式系统)上部署模型。模型轻量化的核心目标是提高推理速度、降低功耗、减少内存占用,以便在边缘设备上实现实时性或低延迟的响应。常用的模型轻量化方法包括以下几种:
1.模型剪枝(Pruning)
简介:通过减少模型中的冗余参数来降低计算量。
具体方法:
1. 结构化剪枝:直接剪掉整个通道、卷积核或层,对硬件加速更友好。
2. 非结构化剪枝: 根据权重值的大小删除个别连接,保留重要的权重,灵活性高,但难以直接优化硬件。
优势:模型大小显著缩减,适合离线部署。
缺点: 剪枝会导致模型架构变化,有时需要重新训练以恢复性能。
2. 量化(Quantization)
简介:将模型权重从高精度(如32位浮点数)缩减到低精度(如8位整型)。
具体方法:
1. 动态量化:在推理时动态量化,将权重存储为低精度,但计算时转为高精度,适合CPU推理。
2. 静态量化: 在训练结束后将权重和激活都量化,常用于推理加速。
3. 量化感知训练(QAT):