题目描述:
思路:
1.n皇后问题,要求任意两个皇后不能处在一行,一列,一条斜线上。
2.n皇后问题一个有效的解,必定是每一行放置一个皇后,只有这样才满足不冲突的最基本要求,因此此题可以转换为从第一行开始,从可选的n个列中选择一个合适的位置放置当前的皇后,然后再到下一行,为下一个皇后选择放置位置。
3.为了确定一个新位置可不可以放置Q,需要记录当前已经确定的Q的位置。
回溯过程:
题解:参考LeetCode-51.N皇后,Python的回溯法实现及详细讲解_甘如荠-CSDN博客
1.result记录最终可行的排列方式(不同于最终输出格式),tmp记录当前搜索路径中的解,tmp[i]表示第i个Q即第i行放在哪一列。
2.dfs执行回溯搜索,row记录当前放置到第几个Q,如果row=n,说明已经全部放置结束,将tmp加入result。row+1进入下一层搜索。
3.isvaild(tmp,row,col)函数判断当前坐标(row,col)是否可以放置一个Q,需要注意的是,只需要考虑已经放置的Q,即tmp中前row-1个值。return_result函数将result转为题目要求的输出格式。
class Solution(object): def solveNQueens(self, n): self.n = n self.result = [] tmp = [None for i in range(n)] self.dfs(tmp,0) self.return_result() return self.return_result() def isvaild(self,tmp,row,col): for i,j in enumerate(tmp): if i==row: break if j==col or row-i==abs(col-j): return False return True def dfs(self,tmp,row): if row==self.n: self.result.append(tmp[:]) return col = 0 while col<self.n: if self.isvaild(tmp,row,col): tmp[row] = col self.dfs(tmp,row+1) col = col+1 return def return_result(self): saver = [] for arr in self.result: solve = [] for pos in arr: line = ["."]*self.n line[pos]="Q" solve.append("".join(line)) saver.append(solve) return saver