贝叶斯推理:后验概率的更新

本文探讨了贝叶斯推理中的后验概率更新,通过一系列实验展示了投掷硬币的例子。随着实验次数增加,硬币正面朝上的后验概率逐渐接近0.5,呈现了概率密度的变化趋势。附带的程序代码进一步阐释了这一过程。
摘要由CSDN通过智能技术生成

贝叶斯推理:后验概率的更新

Bayesian updating of posterior probabilities
这个图说的是投掷硬币时,正面朝上的概率。图的含意如下:
1. 共有10个子图,分别对应10组实验的情况。各组掷币次数为(0,1,2,3,4,5,8,15,500),对应的硬币正面朝上的次数为(0,0,0,1,1,1,2,8,24,242);
2. 子图中蓝色曲线的峰值表示一组实验硬币正面朝上的后验概率;
3. 随着掷币次数的增加,后验概率的值趋向0.5;
4. 子图的X轴表示从0至1的概率值,Y轴表示硬币正面朝上的概率密度。
相应的程序代码如下:

%matplotlib inline
from IPython.core.pylabtools import figsize
import numpy as np
from matplotlib import pyplot as plt
figsize(11, 9)

import scipy.stats as stats

dist = stats.beta # beta 连续分布变量

n_trials = [0, 1, 2, 3, 4, 5, 8, 15, 50, 500] # 各组掷币次数

data = stats.bernoulli.rvs(0.5, size=n_trials[-1]) # 伯努利离散随机变量

x = np.linspace(0, 1, 100) # 把从0至1的值分成100份的等差数列

for k, N in enumerate(n_trials):
    sx = plt.subplot(len(n_trials) / 2, 2, k + 1)
    # 子图所占行数: len(n_trials) / 2 = 5
    # 子图所占列数: 2
    # 子图编号: k + 1

    plt.xlabel("$p$, probability of heads") \
        if k in [0, len(n_trials) - 1] else None
    # 设置当前图 x 轴的标签,如果 k == 0 或 k == len(n_trials) - 1

    plt.setp(sx.get_yticklabels(), visible=False)
    # 设置当前图 y 轴的刻度标签为不可见

    heads = data[:N].sum() # N个钱币正面朝上的全部次数

    y = dist.pdf(x, 1 + heads, 1 + N - heads) # beta 连续随机变量的概率密度函数

    plt.plot(x, y, label="observe %d tosses,\n %d heads" % (N, heads))
    plt.fill_between(x, 0, y, color="#348ABD", alpha=0.4)
    plt.vlines(0.5, 0, 4, color="k", linestyles="--", lw=1)

    leg = plt.legend()
    leg.get_frame().set_alpha(0.4)
    plt.autoscale(tight=True)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值